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Online Convex Optimization

Parameters θ take values in a convex domain Θ ⊂ Rd

1: for t = 1, 2, . . . ,T do

2: Learner estimates θt ∈ Θ

3: Nature reveals convex loss function ft : Θ→ R
4: end for

Goal: Predict almost as well as the best possible parameters θ∗:

RegretT (θ∗) =
T∑
t=1

ft(θt)−
T∑
t=1

ft(θ
∗)

Viewed as a zero-sum game against Nature:

V = min
θ1

max
f1

min
θ2

max
f2
· · · min

θT

max
fT

max
θ∗∈Θ

RegretT (θ∗)
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Example: Electricity Forecasting

Typically, functions ft determined by data:

I Every day t an electricity company needs to
predict how much electricity Yt is needed the
next day

I Given feature vector Xt ∈ Rd , predict
Ŷt = Xᵀ

t θt with a linear model

I Next day: observe Yt

I Measure loss by ft(θt) = (Yt − Ŷt)
2 and

improve parameter estimates: θt → θt+1
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Online Gradient Descent

θ̃t+1 = θt − ηt∇ft(θt)
θt+1 = min

θ∈Θ
‖θ̃t+1 − θ‖

Theorem (Zinkevich, 2003)

Suppose Θ compact with diameter at most D, and ‖∇ft(θt)‖ ≤ G. Then
online gradient descent with ηt = D

G
√
t
guarantees

RegretT (θ∗) ≤ 3

2
GD
√
T

for any choices of Nature.

Without further assumptions, this is optimal (up to a constant factor).
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OGD is Optimal, but is it Good?

Theorem (Lower Bound)

For any learning algorithm, there exists an OCO task with diam(Θ) ≤ D
and ‖∇ft(θt)‖ ≤ G such that

RegretT (θ∗) ≥ cGD
√
T

for some absolute constant c > 0.

Proof:
I Θ = [−D

2 ,
D
2 ]

I ft(θ) = θgt with Pr(gt = −G ) = Pr(gt = +G ) = 1/2

Then for any algorithm

E
[ T∑
t=1

ft(θt)
]

= 0,

but

E
[

min
θ∗∈Θ

T∑
t=1

ft(θ
∗)
]

=
D

2
E
[

min
{ T∑

t=1

gt ,−
T∑
t=1

gt
}]
≤ −cDG

√
T .

Hardest case:
I Linear functions ft
I Gradients gt are pure noise, with maximal variance
→ nothing interesting to learn, so irrelevant for applications
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What if there is Less Noise?

Theorem (Sachs, Hadiji, Van Erven, Guzmán, 2023)

There exists an algorithm (optimistic follow-the-regularized-leader) that
guarantees the worst-case bound

RegretT (θ∗) = O(GD
√
T )

and, if the ft are i.i.d. and Ft(θ) = E[ft(θ)] is L-smooth, then

E[RegretT (θ∗)] = O(σD
√
T + LD2)

I σ2 = maxθ∈Θ Var(∇ft(θ))

I Exploits stochasticity and smoothness if available, but does not
assume them

I Previously known for linear losses, i.e. L = 0 [Rakhlin, Sridharan,
2013]

I Recovers optimal rates in stochastic acceleration
(via online-to-batch conversion on scaled losses)
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What if there is Less Noise? (Refined Version)

Theorem (Sachs, Hadiji, Van Erven, Guzmán, 2023)

There exists an algorithm (optimistic follow-the-regularized-leader) that
guarantees the worst-case bound

RegretT (θ∗) = O(GD
√
T )

and, if the ft are stochastic and each Ft(θ) = E[ft(θ)|Ft−1] is L-smooth,
then

E[RegretT (θ∗)] = O((σ̄T + Σ̄T )D
√
T + LD2)

I σ̄2
T = 1

T

∑T
t=1 maxθ∈Θ Var(∇ft(θ)): average variance of the

gradients

I Σ̄2
T = 1

T

∑T
t=1 maxθ∈Θ ‖∇Ft(θ)−∇Ft−1(θ)‖2: average drift in the

expected gradients

I Interpolates between i.i.d. and adversarial settings
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Towards a Data-dependent Theory
of Online Learning

Applications are not zero-sum games:

1. Worst-case regret witnessed on fully random data
I Not relevant for practice!

2. Nature is not trying to win: e.g.
I Consumers do not adjust electricity consumption to make statistical

analysis hard

Can often adapt to some data- or distribution-dependent measure of
easiness of the data

to get much better performance!
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Standard Textbook View of General OCO [Hazan, 2016]

Convex ft
√
T Online Gradient Descent with ηt ∝ 1√

t

Strongly convex ft lnT Online Gradient Descent wwith ηt ∝ 1
t

Exp-concave ft d lnT Online Newton Step with η ∝ 1

Minimax rates based on curvature (bounded domain and gradients)

I Strongly convex: second derivative at least α > 0, implies exp-concave

I Exp-concave: e−α`t concave
Satisfied by log loss, logistic loss, squared loss, but not hinge loss

Limitations:
I Different method in each case. (Requires sophisticated users.)

I Theoretical tuning of ηt very conservative
I What if curvature varies between rounds?
I In many applications data are stochastic (i.i.d.) Should be easier

than worst case. . .

Need Adaptive Methods!
I Difficulty: All existing methods learn η at too slow rate [HP2005] so

overhead of learning best η ruins potential benefits

9 / 15



Standard Textbook View of General OCO [Hazan, 2016]

Convex ft
√
T Online Gradient Descent with ηt ∝ 1√

t

Strongly convex ft lnT Online Gradient Descent wwith ηt ∝ 1
t

Exp-concave ft d lnT Online Newton Step with η ∝ 1

Minimax rates based on curvature (bounded domain and gradients)

Limitations:
I Different method in each case. (Requires sophisticated users.)

I Theoretical tuning of ηt very conservative
I What if curvature varies between rounds?
I In many applications data are stochastic (i.i.d.) Should be easier

than worst case. . .

Need Adaptive Methods!

I Difficulty: All existing methods learn η at too slow rate [HP2005] so
overhead of learning best η ruins potential benefits

9 / 15



Standard Textbook View of General OCO [Hazan, 2016]

Convex ft
√
T Online Gradient Descent with ηt ∝ 1√

t

Strongly convex ft lnT Online Gradient Descent wwith ηt ∝ 1
t

Exp-concave ft d lnT Online Newton Step with η ∝ 1

Minimax rates based on curvature (bounded domain and gradients)

Limitations:
I Different method in each case. (Requires sophisticated users.)

I Theoretical tuning of ηt very conservative
I What if curvature varies between rounds?
I In many applications data are stochastic (i.i.d.) Should be easier

than worst case. . .

Need Adaptive Methods!

I Difficulty: All existing methods learn η at too slow rate [HP2005] so
overhead of learning best η ruins potential benefits

9 / 15



Theorem (Van Erven, Koolen, 2016, Van Erven, Koolen, Van der Hoeven, 2021)

The MetaGrad algorithm guarantees the following data-dependent
bound:

RegretT (θ∗) ≤
T∑
t=1

(θt − θ∗)ᵀ∇ft(θt) 4


√
T ln lnT

√
VT (θ∗) d lnT + d lnT

where

VT (θ∗) =
T∑
t=1

((θ∗ − θt)ᵀ∇ft(θt))2.

Key Feature:

I Pay only ln lnT for learning η
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Consequences

1. Non-stochastic adaptation:

Convex ft
√
T ln lnT

Exp-concave ft d lnT

Fixed convex ft = f d lnT

Extension by [Wang, Lu, Zhang, 2020] also achieves O(lnT ) for strongly convex losses

2. Stochastic without curvature [Koolen, Grünwald, Van Erven, 2016]:

Suppose ft i.i.d. with stochastic optimum θ∗ = arg minθ∈Θ Ef [f (θ)].
Then expected regret E[RegretT (θ∗)]:

Absolute loss* ft(θ) = |θ − Xt | for d=1 lnT

Hinge loss* max{0, 1− Yt〈θ,Xt〉} d lnT

(B, β)-Bernstein (Bd lnT )1/(2−β) T (1−β)/(2−β)

*Conditions apply
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MetaGrad Experiments [Van Erven, Koolen, Van der Hoeven, 2021]

I 17 benchmark UCI data sets: 11 classification, 6 regression
I Tune algorithms according to theory

(No secret hyperparameter optimization!)
I Measure regret ratio between algorithm and Online Gradient Descent

Algorithm Median Regret Ratio Computation Time

AdaGrad 3.54 O(dT )

Online Gradient Descent 1.00 O(dT )

MetaGrad 0.25 O(d2T )

But... MetaGrad slow in high dimensions. Fast approximations:

Coordinatewise 0.32 O(dT )

Sketching(m = 1) 0.31 O(mdT )

Sketching(m = 10) 0.27 O(mdT )

Sketching(m = 50) 0.25 O(mdT )
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Many Possible Sources of Easiness in Data

I Statistical: nature is (approximately) stationary

I Curvature: loss function is benign

I Game-theoretic: other players update slowly + smoothness

I Model selection: maybe a simple comparator θ∗ is optimal

I Structured comparator classes

I Smoothed analysis: data have smooth distribution

I Bandits: less exploration needed

I . . . ?
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Food for Thought
Can organize by:
I Application domain: games, bandits, full information, market

making, optimization, bilateral trade, . . .
I Types of adaptivity: types of loss functions, easiness caused by

statistical or deterministic regularity, adapting to hyperparameters
like G or ‖θ∗‖, . . .

I Techniques: adaptive learning rates, optimistic gradient estimates,
adaptive exploration for bandits, . . .

Working group goals:
I List desirable types of adaptivity for various settings

I Organize them

I Prioritize

I Identify expertise, common interests and collaborations

No silver bullet:
I The price of adaptivity: if overhead (computational/regret) too

large, may not be worth it
I Some types of adaptivity may be mutually exclusive, e.g. G vs ‖θ∗‖,

or may be impossible in some settings.
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