Formal Results in
Explainable Machine Learning

% UNIVERSITY
=M OF AMSTERDAM

Tim van Erven

Masterclass at the 3rd Annual Meeting
for the Dutch Inverse Problems Community

Groningen, October 12, 2023



Outline

Introduction

2/47



Explainable Machine Learning

Why did the machine learning system
» Classify my company as high risk for money laundering?
Reject my bank loan?
Predict this patient can safely leave the intensive care?

>

>

» Mistake a picture of a husky for a wolf?

» Reject the profile picture | uploaded to get a public transport card?!
>

IPersonal experience
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» Classify my company as high risk for money laundering?
Reject my bank loan?
Predict this patient can safely leave the intensive care?

>

>

» Mistake a picture of a husky for a wolf?

» Reject the profile picture | uploaded to get a public transport card?!
>

Information-Theoretic Constraints:
» Cannot communicate millions of parameters!

» Can communicate only some and/or need
in common with user

IPersonal experience
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Machine Learning: Binary Classification

X2
» Goal: classify an input x = (xq,...,xg) € R? as class —1 or class +1
» Usually by f:R SR,

e.g. predicted class is sign(f(x))
» Classifier f obtained by minimizing error on training data
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Local Post-hoc Explanations

X2

input x to
be explained

X1

> Local: only explain the part of f that is
» Post-hoc: ignore explainability concerns when estimating f.
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Local Explanations via Attributions

- +
X1 ©r(x)1
X2 or(x)2
: : = pr(x)
Xd—1 Sﬁf(X)d—l
Xd or(x)d

br(x) € R? attributes a weight to each feature, which explains
how important the feature is for the classification of x by 7.
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Local Explanations via Attributions

-+
x1 ] er(x)1
X2 = ©f(x)2
: : = ¢r(x)
Xd-1 | er(X)a

Xd ] or(x)d

#r(x) € RY attributes a weight to each feature, which explains
the feature is

Example: low d, linear f ;
f(X) =0y + Z 0;x;
i=1

or(x)i = 6; could be coefficient of x;

> NB This example is In general ¢¢(x) will depend on x.

But many methods can be viewed as local linearizations of f.
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Example: Gradient-based Explanations

Various gradient methods?

Gradient
Vanilla Integrated Guided BackProp | SmoothGrad

E
S
K
=3
=
£
5
k3
2
3
B
K
8
5

> Vanilla gradient: ¢¢(x) = V£(x)

» SmoothGrad: ¢(x) = Ezn(x,5) [Vf(2)] (Smilkov et al., 2017)
> ..

2Image source: (Smilkov et al., 2017)
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Example: LIME

LIME (Ribeiro, Singh, and Guestrin, 2016): Do local linear approximation of f

near x (optionally in dimensionality reduced space), and report
coefficients

LIME for tabular data:3

Prediction probabilities edible poisonous Feature Value
odor=foul
edible 026 odor=foul
poisonous [ 100 illie-broad

gill-size=broad
stall-surface-abo.. stalk-surface-above-ring=silky True
spore-print-color=...

o spore-print-color=chocolate ~ True

stalk-surface-below-ring=silky True

(classifying edibility of mushrooms)

3Image source: https://github.com/marcotcr/lime
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https://github.com/marcotcr/lime

Example: LIME

LIME (Ribeiro, Singh, and Guestrin, 2016): Do local linear approximation of f
near x (optionally in dimensionality reduced space), and report
coefficients

LIME for text:3

Prediction probabilitics sincere

Text with highlighted words

sincere [0 When will Quora stop so many utterly il questions
insincere [N 0.15 being asked here, primarily by the unintelligent that

insist on walking this earth?

utterly

3Image source: https://towardsdatascience.com/
what-makes-your-question-insincere-in-quora-26ee7658b010
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Example: LIME

LIME (Ribeiro, Singh, and Guestrin, 2016): Do local linear approximation of f
near x (optionally in dimensionality reduced space), and report
coefficients

LIME for images:3

¥

A

(a) Original Image (b) Explaining Electric guitar (c) Explaining Acoustic guitar ~ (d) Explaining Labrador

3Ilmage by Ribeiro, Singh, and Guestrin (2016)
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Exciting Times to Work on Explainability

Original Image Manipulated Image
“ - e ~ .

Lots of open issues:
» Easily manipulated
» Explanation methods often disagree

» Plausible looking explanations may not
represent model being explained &

thes
1 expianaiion

(Adebayo et al., 2018) : was

marapulated

Image by Dombrowski et al., 2019

LIME Method SHAP Method

umE KernelSHAP

Image by Krishna et al., 2022
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Outline

Local Function Approximation Methods
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Local Smoothed Function Approximation

(Han, Srinivas, and
Lakkaraju, 2022)

*

g" = argmin E[((f,g,x,¢)]
geg ¢

» f{: function to be explained at input x
» g: explanation from class of
» /: loss function

» Expectation by random perturbation £ to x:

Z=x®E (e.g. addition, multiplication, ...)

12/47



Local Smoothed Function Approximation

(Han, Srinivas, and
Lakkaraju, 2022)

g" = argmin E[((f, g,x,£)]
geg ¢

» f{: function to be explained at input x

» g: explanation from class of

» /: loss function

» Expectation by random perturbation £ to x:

Z=x®E (e.g. addition, multiplication, ...)

Remarks:

» Approximates smoothed version of f, where amount of smoothing
depends on distribution of &£

» Does not approximate the induced decision boundary {x : f(x) = 0}
(as often suggested)

» In practice: approximate expectation by finite nr. of samples of £
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Example: C-LIME

*

g" = argmin E[{(f, g,x,&)]
geg ¢
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Example: C-LIME

s = argmin £[((2) - 5(2))]

U(f,g.x.€) = (f(2) — g(2))

for additive perturbations Z = x + &£

13/47



Example: C-LIME

0,05 = ar%;:in I; [(f(Z) AR 90)2}

Uf,g.x.€) = (f(2) - g(2))

for additive perturbations Z = x + ¢
>

g(x) = xT0 + 6y (0 €RY, 6y € R)

NB: output only feature weights 6*, not intercept 6.
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Example: C-LIME

0,05 = ar%;:in I; [(f(Z) AR 90)2}

Uf,g.x.€) = (f(2) - g(2))

for additive perturbations Z = x + ¢
>

g(x) = xT0 + 6y (0 €RY, 6y € R)

NB: output only feature weights 6*, not intercept 6.
>

£~ N(0,%) for hyperparameter ¥ > 0
Z ~N(x,X)
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Example: SmoothGrad

o) =, E VA2

Theorem (Agarwal et al., 2021)

SmoothGrad and C-Lime are equivalent.
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1. For Gaussian Z, Stein's lemma (proved by a variant of integration by
parts) states:

L E VA2 =T EIA(2)(Z - %)
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Example: SmoothGrad

o) =, E VA2

Theorem (Agarwal et al., 2021)
SmoothGrad and C-Lime are equivalent.

Proof sketch:
1. For Gaussian Z, Stein's lemma (proved by a variant of integration by
parts) states:

L E VA2 =T EIA(2)(Z - %)

2. The C-LIME objective is a least-squares problem:
argminE {(f(Z) ~ 770 — 90)2}
0,00
Minimizing first in 8 gives 6y = E[f(Z)] — xT6. Then setting the
gradient w.r.t. 6 to 0 leads to the same solution as SmoothGrad:

0 =X 1E[f(Z2)(Z - x)]

14 /47



Sampling High-level Features
Motivation:
» Low-level features not interpretable (e.g. pixels)

» Want explanation in terms of high-level concepts (e.g. superpixels)

¥

4

)
(a) Original Image (b) Explaining Electric guitar (c) Explaining Acoustic guitar  (d) Explaining Labrador
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Sampling High-level Features
Motivation:
» Low-level features not interpretable (e.g. pixels)

» Want explanation in terms of high-level concepts (e.g. superpixels)

¥

A

I
(a) Original Image (b) Explaining Electric guitar (c) Explaining Acoustic guitar  (d) Explaining Labrador
Approach:
» Binary parametrization hy : {0,1}" — X of variations of x:
P> X; = 1: set i-th interpretable high-level concept from x to be present

> X; = 0: remove i-th interpretable high-level concept from x (e.g.
replace superpixel by gray values)
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Sampling High-level Features
Motivation:
» Low-level features not interpretable (e.g. pixels)

» Want explanation in terms of high-level concepts (e.g. superpixels)

¥

A

(a) Original Image (b) Explaining Electric guitar (c) Explaining Acoustic guitar  (d) Explaining Labrador

Approach:
» Binary parametrization hy : {0,1}" — X of variations of x:
P> X; = 1: set i-th interpretable high-level concept from x to be present
> X; = 0: remove i-th interpretable high-level concept from x (e.g.
replace superpixel by gray values)

» Approximate the new function of high-level concepts
(%) = f(hs(X)) for X € {0,1}™.

NB fx and f have different domains, so an approximation of f is not an
approximation of f

15/47



Example: LIME

*

g = argmin E[((f,g,x,¢)]
geg ¢
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Example: LIME

gt = argminE {WX(Z)(fx(Z)*g(Z))ﬂ
geg 7

Weighted squared error:

U(Fer8.6) = T 2)(f(2) - g(2))?

16 /47



Example: LIME

* = argmin E |1, (2 7Y — g(2))?
g = agmin & [n(2)(5(2) - 5(2))]

Weighted squared error:

U(f,8,€) = m(2)(K(2) — g(2))

Let X = h!(x) be the high-level representation of x. (Typically
x =1.) Then £ € {0,1}™ masks high-level features:

Z— 1 if)_(;:].andf,':].,
0 otherwise.

2

=
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Example: LIME
0".05 = argmin E {WX(Z)(fX(Z) e oo)ﬂ

Weighted squared error:

U(f,8,€) = m(2)(K(2) — g(2))

Let X = h !(x) be the high-level representation of x. (Typically
x =1.) Then £ € {0,1}™ masks high-level features:

5 {1 if% =1and& =1,

0 otherwise.

2
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Example: LIME

0°.0; = argmin E {WX(Z)(fX(Z) e 00))2}
0,00 27

> Weighted squared error:

U(Fer8.6) = T 2)(f(2) - g(2))?

Let X = h!(x) be the high-level representation of x. (Typically
x =1.) Then £ € {0,1}™ masks high-level features:

Z__{l ifX; =1land& =1,

0 otherwise.

> downscale distant instances*:
. deos(Z, )2
x(Z) = exp ( - %) for hyperparameter v > 0.
v

T . . .
4dcos(u, v) = 1 — 4= is the cosine distance between vectors
TulllVT -



Example: LIME

0°.0; = argmin E {WX(Z)(fX(Z) e 00))2}
0,00 27

> Weighted squared error:

U(Fer8.6) = T 2)(f(2) - g(2))?

Let X = h!(x) be the high-level representation of x. (Typically
x =1.) Then £ € {0,1}™ masks high-level features:

Z__{l ifX; =1land& =1,

0 otherwise.

>
> downscale distant instances*:
> dcos Za x)?
x(Z) = exp ( - %) for hyperparameter v > 0.
v
> & ~ Bernoulli(1/2)

T . . .
4dcos(u, v) = 1 — 4= is the cosine distance between vectors
TulllVT -



Example: SHAP

(Lundberg and Lee, 2017 translate game-theory result by Young, 1985)
1. Local accuracy at input x:
(%) = X760 + 6o
2. No weight on features missing from X:
=0 = 0,=0
3. Symmetry:®> For any permutation 7 : [m] — [m]

6‘(7fo) = 7Ta(fx)

/

4. Strong monotonicity: For any two functions £, f]

If £(%) = £(%\ 1) = £(X)

> (X)) — f(X\ V) for all X € {0,1}™,
then 9,(fx) > 0,(&)

SLundberg and Lee, 2017 have incorrect “proof” that symmetry is implied by the

other conditions.
17 /47
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Example: SHAP

(Lundberg and Lee, 2017 translate game-theory result by Young, 1985)

1. Local accuracy at input x: i (X) = X760 + 6y
2. No weight on features missing from x: x; =0 = 6, =0
3. Symmetry: For any permutation 7 : [m] — [m]: 0(nf,) = 76(fy)
4. Strong monotonicity: For any two functions f, ]
If F(X)— &\ 7)) > (X)) — (X \ ) for all X € {0,1}",
then 6;(f)) > 0:(f).

Theorem (Young, 1985; Lundberg and Lee, 2017)

The unique 0,0y that satisfy all four axioms are 0y = f,(0) and

o= 3 Bl ey iz,

m!
%% <X

where |X| is the number of ones in X, and X \ i is X with the i-th
component set to 0.

17/47



Kernel SHAP

There is a surprising relation between SHAP and LIME:

Theorem (Lundberg and Lee (2017))
SHAP is equivalent to LIME with the weights set to

m—1
(\’§|)|Z|(m_ |Z|)

WX(Z) =

» NB 7, (@) = mx(1) = oo. Interpret as hard constraints that
g(0) = £(0) and g(1) = £(1).

18/47



Kernel SHAP

There is a surprising relation between SHAP and LIME:

Theorem (Lundberg and Lee (2017))
SHAP is equivalent to LIME with the weights set to

m—1

@)= (E|)|Z|(m -12])

» NB 7, (0) = mx(1) = oo. Interpret as hard constraints that

g(0) = £(0) and g(1) = £(1).
Proof remarks:

» The proof by Lundberg and Lee (2017) is based on evaluating the
LIME weighted least squares solution 6 = (XTWX)~1XT Wy

» They omit many non-trivial proof details

» | have checked all steps except their assumption that the weighted
least squares solution with the infinite weights is the limit of the
least squares solutions for finite weights tending to oo

18/47



Garreau, Mardaoui
What Does LIME Really See in Images?
ICML, 2021



LIME for Images

1. Decompose image into d superpixels (small, homogeneous patches)®

2. Can sample perturbed image Z by
> Sample d Bernoulli(1/2) variables B = (B, ..., BY)
> If B/ =1, then keep j-th superpixel from original image
> If B/ =0, then replace j-th superpixel by its average pixel value.

LIME explanation

predicted: trailer_truck (35.2%)

5Image courtesy of Damien Garreau
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LIME for Images

. Decompose image into d superpixels (small, homogeneous patches)

2. Can sample perturbed image Z by

> Sample d Bernoulli(1/2) variables B = (BY,...,BY)
> If B{ =1, then keep j-th superpixel from original image
> If B/ =0, then replace j-th superpixel by its average pixel value.

3. Query response Y = f(Z2)
. Weight image Z by distance to original

= oxp (- denlB 1Yy

. Sample n times and fit weighted ridge regression

for hyperparameter v > 0
5
n

0, = argmin mi i(Yi = BTO — 65)% + X||0]?
g min min ;M 70— 60)° + Allo]

5In practice A = 1 is tiny; in analysis take X\ = 0 for simplicity.
20/47



Asymptotic Analysis of LIME for Images

» Recall that B = (Z%,...,Z9) i.i.d. Bernoulli(1/2)

» Induces distribution on weight 7 and perturbed image Z
Theorem (Garreau, Mardaoui, 2021)
Suppose f bounded and A = 0. Then

A~

0, — 0 in probability,
where

0= aElrf(2)]+ EBf(Z)] +c Y, ElrBf(2)]

ke{l,....d}
k]

for some constants ¢, ¢p, c3 that do not depend on f, and which can be
computed in closed form.

21/47



Consequences

6 = aElrf(2)] + QERBF(Z)+c Y E[B*(2))
ke{l,...,d}
k)

Consequence 1
» Apart from sampling noise, LIME explanations are linear in f:

0'e =0 + 08

Consequence 2: Large Bandwidth
» Asv —o00: g — -2, ¢0—4 ¢c3—0,and 7 — 1 as.

0, — 2( EIf(2)|B/ = 1] - E[f(2)])

» Compares value of f with and without fixing the j-th superpixel to
be as in the model.
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Discussion: What are local approximations good for?

Common question:
Which local approximation method should | use?
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Discussion: What are local approximations good for?

Common question:
Which local approximation method should | use?

Current state of affairs:
> , because none of the approximation methods specify
under which conditions or for what purpose they can be used
» In practice: people use the method(s) with best software; e.g. SHAP

» And sometimes they are impressed that SHAP has a justification
from the economics literature, without considering whether the
SHAP axioms are appropriate for their task: motivation by
mathematical intimidation.
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Discussion: What are local approximations good for?

Common question:
Which local approximation method should | use?

Current state of affairs:

> , because none of the approximation methods specify
under which conditions or for what purpose they can be used

» In practice: people use the method(s) with best software; e.g. SHAP

» And sometimes they are impressed that SHAP has a justification
from the economics literature, without considering whether the
SHAP axioms are appropriate for their task: motivation by
mathematical intimidation.

What can be done?
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Discussion: What are local approximations good for?

Common question:
Which local approximation method should | use?

One Possible View:
» Doshi-Velez and Kim, 2017: we should provide explanations when
the

> If we take this seriously, then the user should be able to achieve at
least some goals using the explanations. What are they?

23 /47



Outline

Algorithmic Recourse
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Example: Counterfactual Explanations

“If you would have had an income of €40 000 instead of
your loan request would have been approved.”

X2

Counterfactual explanation: X = argmin  dist(x, x)
x':sign(f(x'))=+1

25 /47



Example: Counterfactual Explanations

“If you would have had an income of €40 000 instead of
your loan request would have been approved.”

X2

-1

Counterfactual explanation: X = argmin  dist(x, x)
x':sign(f(x'))=+1

Viewed as attribution method: ¢r(x) = X — x

25 /47



Explanations with Recourse as their Goal

“If you change your current income of to €40 000,
then your loan request will be approved.”

F(x) =0 -|-]_

X2

-1

> Attribution methods if they tell the user how to
change their features such that f takes their desired value.

26 /47



Fokkema, De Heide, Van Erven

Attribution-based Explanations that
Provide Recourse Cannot be Robust

ArXiv:2205.15834 preprint, 2023



Recourse Sensitivity

» (Fokkema, de Heide, and van Erven, 2023): our approach to define
weakest possible requirement for providing recourse.

X2
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Recourse Sensitivity

» (Fokkema, de Heide, and van Erven, 2023): our approach to define
weakest possible requirement for providing recourse.

X2

X1

1. Assume user can change their features by at most some § > 0
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Recourse Sensitivity

» (Fokkema, de Heide, and van Erven, 2023): our approach to define
weakest possible requirement for providing recourse.

X2

X1

1. Assume user can change their features by at most some § > 0

2. ¢¢(x) can point in within
distance §, and length does not matter as long as it is > 0.

3. If no direction provides recourse, then ¢¢(x) can be arbitrary.

28 /47



Robustness of Explanations

Compare:
1. "If you change your current income of to €40 000, then
your loan request will be approved.”
2. "If you change your current income of to €45 000, then

your loan request will be approved.”

Minor changes in x should not cause big changes in explanations!

29 /47
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Robustness of Explanations
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On the robustness of interpretability methods
D Alvarez-Melis, TS Jaakkola
arXiv preprint arXiv:1806.08049, 2018 « arxiv.org

We argue that robustness of explanations---i.e., that similar inputs should give rise to
similar explanations---is a key desideratum for interpretability. We introduce metrics to
quantify robustness and demonstrate that current methods do not perform well according
to these metrics. Finally, we propose ways that robustness can be enforced on existing
interpretability approaches.
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Impossibility in Binary Classification

Theorem (Fokkema, De Heide, Van Erven, 2022)

For any § > Q there exists a continuous function f such that no
attribution method ¢¢ can be both recourse sensitive and continuous.

» Power of math: can reason about all explanation methods that
could possibly exist
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Proof Sketch

L = {x : recourse possible by moving at most ¢ left}

R = {x : recourse possible by moving at most ¢ right}
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Proof Sketch

L = {x : recourse possible by moving at most ¢ left}
R = {x : recourse possible by moving at most ¢ right}

Recourse sensitivity implies:

<0 forxel\R
Pr(x)¢ >0 forxe R\ L
#0 forxelNR
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Proof Sketch

N f(x)
3¢
50
>
X

L = {x : recourse possible by moving at most ¢ left}
R = {x : recourse possible by moving at most ¢ right}

Recourse sensitivity implies: But this I

<0 forxel\R (by the mean-value theorem)

¢r(x) >0 forxeR\L Can embed 1D example in higher
#0 forxelNR dimensions as well.
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Fokkema, Garreau, Van Erven
The Risks of Recourse in Binary Classification

ArXiv::2306.00497 preprint, 2023



Effect of Recourse on the Population

Before recourse After recourse

What happens to the accuracy of the classifier?

» Accuracy matters!
For example, incorrect +1 classifications = users defaulting on loans
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Effect of Recourse

Situation before Recourse:
» User distribution: (X, Y) ~ P
» Classifier f : X — {—1,+1}
> Risk: Rp(f) = P(f(Xo) #Y)

Effect of Recourse:
» User features change from Xy to X
» Distribution of Y may change
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Need to Model User Behavior

P(Y =1|X = x)
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Need to Model User Behavior

P(Y =1|X = x)
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Need to Model User Behavior

» Compliant users: probability of Y after recourse is P(Y|X)
> Defiant users: probability of Y after recourse is P(Y|Xo)
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Need to Model User Behavior

Examples:
» Credit loan application:

» Compliant: Applicant improves risky behaviour
> Defiant: Applicant tries to “game the system”

» Medical Diagnosis:

» Compliant: Patient improves their health
> Defiant: Patient takes medicine to reduce symptoms

» Job applications:

» Compliant: Applicant improves their skills
» Defiant: Applicant improves their CV

> probability of Y after recourse is P(Y|X)
> probability of Y after recourse is P(Y|Xp)
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Effect of Recourse on Population-level Accuracy

* +1 correct .
» —1 correct DL
x +1 wrong OO 5 .

| Ro(fp) = 0.30

Before recourse After recourse
(compliant users)

» Simulation with Gaussian data
>

» Many more customers defaulting on their loans!
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Learning-theoretic Framework

Situation before Recourse:
» User distribution: (Xo, Y) ~ P
» Classifier f : X — {—1,+1}
> Risk: Rp(f) = P(f(Xo) #Y)
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Learning-theoretic Framework

User distribution: (Xp, Y) ~ P
Classifier f : X — {-1,+1}
Risk: Rp(f) = P(f(Xo) £ Y)

Users' choice to accept recourse is B € {0,1} with
PI’(B = l‘XQ) = I’(Xo).

Users arrive as before: Xy ~ P
Recourse proposal: X = argmin, ¢_ 1 [[x = Xo|
Users' choice to accept is B € {0,1} with Pr(B = 1|Xp) = r(Xo):

X =(1-B)Xy + BXF
Q is the resulting distribution of Xy, B, X, Y
Risk: Ro(f) = Q(F(Xo) # V)
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Recourse Increases the Risk

fp = argmin Rp(f)
f

Bayes-optimal _
classifier under P: £5(x) — +1 if P(Y =1|X =x) > 1/2,
p(x) = :
—1 otherwise.
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Recourse Increases the Risk

fp = arg min Rp(f)
Bayes-optimal f _
classifier under P: £3(x) = +1 i P(Y =1|X =x) > 1/2,
p\X) = .
—1 otherwise.
Regularity conditions:
> Well-defined setup: {x € X : f3(x) = +1} is closed
» Continuous conditional probabilities: P(Y = 1|Xp = x) = 1/2 for all
x on the decision boundary of fg

Theorem

Then, both if the users are defiant and if the users are compliant,

Rao(fp) = Re(fp).

The inequality is strict if the probability of recourse in the negative class
is non-zero: P(B =1, f5(Xp) = —1) > 0.
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Recourse Increases the Risk
Regularity conditions:
> Well-defined setup: {x € X' : f3(x) = +1} is closed
» Continuous conditional probabilities: P(Y = 1|Xp = x) = 1/2 for all
x on the decision boundary of f3

Theorem

Then, both if the users are defiant and if the users are compliant,

Defiant case:
Ro(ff) = P(B=1,Y = —1) - P(B =1,f3(X) # ¥) + Re(f{)
> Re(fF)
Compliant case:
Ro(f3) = 1P(B = 1,f3(X0) = —1) — P(B = L f5(Xo) = -1, Y = 1)

+ Rp(fp)
> Rp(fp).
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Proof Idea: Defiant Case

P(Y =1|X = x)

X

> Defiant case: Q(Y|X,Xo) = P(Y|Xo)
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Proof ldea: Defiant Case

P(Y =1|X = x)

» Defiant case: Q(Y|X,Xo) = P(Y|Xop)
» Recourse misclassifies users from class —1 as class +1
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Proof Idea: Compliant Case

P(Y = 1|X = x)
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Proof Idea: Compliant Case

PLY # ()X = )

0.8 -

0.6 | .
el 1 +1 |
0.2 f

> Compliant case: Q(Y|X,Xp) = P(Y|X)

41/47



Proof Idea: Compliant Case

P(Y # (91X =)

1 11|

0.4 r

0.2 r

> Compliant case: Q(Y|X,Xp) = P(Y|X)

» Recourse moves users from high certainty to lowest certainty region
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X2

Strategic Classification

Recourse
accepted

decision boundary
N - - - - effective decision boundary

X1

» Suppose recourse accepted deterministically within distance D of
decision boundary
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Strategic Classification

Recourse
accepted

—— decision boundary
- - - - effective decision boundary

X2

» Suppose recourse accepted deterministically within distance D of
decision boundary

> by moving decision boundary back by
distance D
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Strategic Classification

—— decision boundary
- - - - effective decision boundary

Recourse
accepted

X2

» Suppose recourse accepted deterministically within distance D of
decision boundary

>
distance D

by moving decision boundary back by

Definition

A set of classifiers F is if for any f € F there
exists a unique f’ € F such that the decision boundary for f without
recourse is equal to the effective decision boundary of f’ with recourse.
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Strategic Classification

Assumptions:

» F invariant under recourse

Theorem (Defiant Case)

Recourse has no effect:
min Ro,(f) = min Rp(f).

> Write Qr instead of @ to emphasize dependence of the effect of
recourse on f.

43 /47



Strategic Classification

Assumptions:

» F invariant under recourse

Theorem (Compliant Case)

Let f € argmins. Rp(f) with corresponding f' € F that has the same
effective decision boundary after recourse. Then

i < f).
min Ro, (f) < Ro, (f)

» Think of Qs as moving users away from the decision boundary
compared to P, so plausible that Rg,, (f) < Rp(f).

» Only case where we find that recourse is in terms of
accuracy.

» But cancels the effect of recourse and does not help any users from
the original —1 class. Not really what we imagined. ..
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Conclusion

Zooming Out
» Most work on explainability is empirical

» Empirical approach has been very successful in deep learning, but
struggles to find proper foundations for explainability

» Formal analysis is slow and leads to more modest claims, but builds
up

Where Do We Go From Here?
1. of explainability

2. Bring exaggerated empirical claims down to earth by proving

3. Better understanding of limitations = develop better explanations

4. Explainability results for inverse problems? What are the key
questions?
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