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Explainable Machine Learning

The Need for Explanations:

Why did the machine learning system

I Classify my company as high risk for money laundering?

I Reject my bank loan?

I Predict this patient can safely leave the intensive care?

I Mistake a picture of a husky for a wolf?

I Reject the profile picture I uploaded to get a public transport card?1

I . . .

Information-Theoretic Constraints:

I Cannot communicate millions of parameters!

I Can communicate only some relevant aspects and/or need
high-level concepts in common with user

1Personal experience
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Local Post-hoc Explanations

s
x1

x2

f (x) = 0

-1

+1

input x to
be explained

I Local: only explain the part of f that is (most) relevant for x .

I Post-hoc: ignore explainability concerns when estimating f .
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Local Explanations via Attributions


x1

x2

...
xd−1

xd




ϕf (x)1

ϕf (x)2

...
ϕf (x)d−1

ϕf (x)d

= ϕf (x)

− +

φf (x) ∈ Rd attributes a weight to each feature, which explains
how important the feature is for the classification of x by f .

Example: low d , linear f

f (x) = θ0 +
d∑

i=1

θixi

φf (x)i = θi could be coefficient of xi

I NB This example is too simple! In general φf (x) will depend on x .
But many methods can be viewed as local linearizations of f .
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Example: Gradient-based Explanations

Various gradient methods2

Sharper sensitivity maps: removing noise by adding noise

Figure 4. Effect of sample size on the estimated gradient for inception. 10% noise was applied to each image.

Figure 5. Qualitative evaluation of different methods. First three (last three) rows show examples where applying SMOOTHGRAD had
high (low) impact on the quality of sensitivity map.

I Vanilla gradient: φf (x) = ∇f (x)

I SmoothGrad: φf (x) = EZ∼N (x,Σ)[∇f (Z )]

I . . .

2Image source: [Smilkov et al., 2017]
5 / 21



Example Attribution Method: LIME

LIME: Do local linear approximation of f near x (optionally in
dimensionality reduced space), and report coefficients

LIME for tabular data:3

(classifying edibility of mushrooms)

3Image source: https://github.com/marcotcr/lime
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Example: Explaining Text

LIME for text:4

Current development process in the literature:

I Specify method with intuitively reasonable properties

I Show examples where it does something intuitively reasonable

I Follow-up studies find that method fails for application X

4Image source: https://towardsdatascience.com/

what-makes-your-question-insincere-in-quora-26ee7658b010
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Example: What is the Right Explanation?

COMPAS data5:

I Data collected by Propublica reporters to show that commercial recidivism
prediction algorithm used by judges in the USA is biased against black
defendants compared to white defendants.

40 Krishna, Han, et al.

Fig. 26. The user interface for a prompt. The user is shown two explanations for a COMPAS data point, showing the feature importance
value of each of the 7 features. Red and blue indicate negative and positive feature values, respectively. See the text for more details.

E.2 Prompts Used

In this section, we share the 15 prompts that we showed users. Each prompt highlights a pair of di�erent explainability
algorithms on a COMPAS data point. For each pair, we chose the data point from the entire COMPAS set that maximized
the rank correlation between the explanations.

E.3 User Study �estions

In each of the �ve prompts, we asked participants the following questions, which we refer to as Set 1. Questions 3-4
were only shown if the user selected Mostly agree, Mostly disagree, or Completely disagree to Question (1).

(1) To what extent do you think the two explanations shown above agree or disagree with each other? (choice
between Completely agree, Mostly agree, Mostly disagree, Completely disagree)

(2) Please explain why you chose the above answer.
(3) Since you believe that the above explanations disagree (to some extent), which explanation would you rely on?

(choice between Algorithm 1 explanation, Algorithm 2 explanation, It depends)
(4) Please explain why you chose the above answer.

After answering all �ve prompts, the user was then asked the following set of questions, which we refer to as Set 2.
Questions 4-9 were only shown if the user selected Yes to Question 3.

(1) (Optional) What is your name?
(2) What is your occupation? (eg: PhD student, software engineer, etc.)
(3) Have you used explainability methods in your work before? (Yes/No)
(4) What do you use explainability methods for?

40 Krishna, Han, et al.
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value of each of the 7 features. Red and blue indicate negative and positive feature values, respectively. See the text for more details.

E.2 Prompts Used

In this section, we share the 15 prompts that we showed users. Each prompt highlights a pair of di�erent explainability
algorithms on a COMPAS data point. For each pair, we chose the data point from the entire COMPAS set that maximized
the rank correlation between the explanations.

E.3 User Study �estions

In each of the �ve prompts, we asked participants the following questions, which we refer to as Set 1. Questions 3-4
were only shown if the user selected Mostly agree, Mostly disagree, or Completely disagree to Question (1).

(1) To what extent do you think the two explanations shown above agree or disagree with each other? (choice
between Completely agree, Mostly agree, Mostly disagree, Completely disagree)

(2) Please explain why you chose the above answer.
(3) Since you believe that the above explanations disagree (to some extent), which explanation would you rely on?

(choice between Algorithm 1 explanation, Algorithm 2 explanation, It depends)
(4) Please explain why you chose the above answer.

After answering all �ve prompts, the user was then asked the following set of questions, which we refer to as Set 2.
Questions 4-9 were only shown if the user selected Yes to Question 3.

(1) (Optional) What is your name?
(2) What is your occupation? (eg: PhD student, software engineer, etc.)
(3) Have you used explainability methods in your work before? (Yes/No)
(4) What do you use explainability methods for?

LIME Method SHAP Method

5https://www.propublica.org/article/

how-we-analyzed-the-compas-recidivism-algorithm

Images from [Krishna et al., 2022]
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Asymptotic Analysis of LIME for Images

Garreau, Mardaoui

What Does LIME Really See in Images?

ICML, 2021



LIME for Images

1. Decompose image into d superpixels (small, homogeneous patches)6

2. Can sample perturbed image X̃ by
I Sample d Bernoulli(1/2) variables Z = (Z 1, . . . ,Z d)
I If Z j = 1, then keep j-th superpixel from original image
I If Z j = 0, then replace j-th superpixel by its average pixel value.

Image LIME
I on a high level, Image LIME operates as follows:

1. decompose › in d superpixels (small, homogeneous patches);
2. create a number of perturbed samples (= new images) x1, . . . , xn;
3. weight the perturbed samples;
4. query the model, getting predictions yi = f (xi);
5. build a local surrogate model —̂n fitting the yis on the presence or absence of superpixels.

I generally, highlight in the original image the (top 5) positive superpixels:

predLcted: traLler_truck (35.2%) LIM( explanatLon

10

6Image courtesy of Damien Garreau
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2. Can sample perturbed image X̃ by
I Sample d Bernoulli(1/2) variables Z = (Z 1, . . . ,Z d)
I If Z j = 1, then keep j-th superpixel from original image
I If Z j = 0, then replace j-th superpixel by its average pixel value.

3. Query response Ỹ = f (X̃ )

4. Weight image X̃ by distance to original6

π = exp
(
− dcos(Z ,1)2

2ν2

)
for hyperparameter ν > 0

5. Sample n times and fit weighted ridge regression7

θ̂n = arg min
θ∈Rd

min
θ0∈R

n∑
i=1

πi (Ỹi − Zᵀ
i θ + θ0)2 + λ‖θ‖2

6dcos(u, v) = 1 − uᵀv
‖u‖‖v‖ is the cosine distance between vectors

7In practice λ = 1 is tiny; in analysis take λ = 0 for simplicity.
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Asymptotic Analysis of LIME for Images

I Recall that Z = (Z 1, . . . ,Z d) i.i.d. Bernoulli(1/2)

I Induces distribution on weight π and perturbed image X̃

Theorem (Garreau, Mardaoui, 2021)

Suppose f bounded and λ = 0. Then

θ̂n → θ in probability,

where

θj = c1 E
Z

[πf (X̃ )] + c2 E
Z

[πZ j f (X̃ )] + c3

∑
k∈{1,...,d}

k 6=j

E
Z

[πZ k f (X̃ )]

for some constants c1, c2, c3 that do not depend on f , and which can be
computed in closed form.
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Consequences

θj = c1 E
Z

[πf (X̃ )] + c2 E
Z

[πZ j f (X̃ )] + c3

∑
k∈{1,...,d}

k 6=j

E
Z

[πZ k f (X̃ )]

Consequence 1

I Apart from sampling noise, LIME explanations are linear in f :

βf +g = βf + βg

Consequence 2: Large Bandwidth

I As ν →∞: c1 → −2, c2 → 4, c3 → 0, and π → 1 a.s.

θj → 2
(
E
Z

[f (X̃ )|Z j = 1]− E
Z

[f (X̃ )]
)

I Compares value of f with and without fixing the j-th superpixel to
be as in the model.
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An Impossibility Result

Fokkema, De Heide, Van Erven

Attribution-based Explanations that
Provide Recourse Cannot be Robust

ArXiv:2205.15834 preprint, 2023



Example: Counterfactual Explanations

“If you would have had an income of e40 000 instead of e35 000,

your loan request would have been approved.”

s
x1

x2

f (x) = 0

-1

+1

x

x̃ (counterfactual)

φf (x)

Counterfactual explanation: x̃ = arg min
x′:sign(f (x′))=+1

dist(x ′, x)

Viewed as attribution method: φf (x) = x̃ − x
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Explanations with Recourse as their Goal

“If you change your current income of e35 000 to e40 000,

then your loan request will be approved.”

s
x1

x2

f (x) = 0

-1

+1

x

x̃

φf (x)

I Attribution methods provide recourse if they tell the user how to
change their features such that f takes their desired value.
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Recourse Sensitivity
I [Fokkema, De Heide, Van Erven, 2022]: our approach to define

weakest possible requirement for providing recourse.

s
x1

x2

f (x) = 0

x

1. Assume user can change their features by at most some δ > 0

2. φf (x) can point in any direction that provides recourse within
distance δ, and length does not matter as long as it is > 0.

3. If no direction provides recourse, then φf (x) can be arbitrary.

16 / 21



Recourse Sensitivity
I [Fokkema, De Heide, Van Erven, 2022]: our approach to define

weakest possible requirement for providing recourse.

s
x1

x2

f (x) = 0

x
δ

1. Assume user can change their features by at most some δ > 0

2. φf (x) can point in any direction that provides recourse within
distance δ, and length does not matter as long as it is > 0.

3. If no direction provides recourse, then φf (x) can be arbitrary.

16 / 21



Recourse Sensitivity
I [Fokkema, De Heide, Van Erven, 2022]: our approach to define

weakest possible requirement for providing recourse.

s
x1

x2

f (x) = 0

x

1. Assume user can change their features by at most some δ > 0

2. φf (x) can point in any direction that provides recourse within
distance δ, and length does not matter as long as it is > 0.

3. If no direction provides recourse, then φf (x) can be arbitrary.
16 / 21



Robustness of Explanations
Compare:

1. “If you change your current income of e35 000 to e40 000, then
your loan request will be approved.”

2. “If you change your current income of e35 001 to e45 000, then
your loan request will be approved.”

Minor changes in x should not cause big changes in explanations!

Robustness: If f is continuous, then φf should also be continuous.
(e.g. survey of recourse by [Karimi et al., 2021])
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Impossibility in Binary Classification

Theorem (Fokkema, De Heide, Van Erven, 2022)

For any δ > 0 there exists a continuous function f such that no
attribution method φf can be both recourse sensitive and continuous.

I Power of math: can reason about all explanation methods that
could possibly exist
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Proof Sketch

x

L

R

3
2δ

f (x)

L = {x : recourse possible by moving at most δ left}
R = {x : recourse possible by moving at most δ right}

Recourse sensitivity implies:

φf (x)


< 0 for x ∈ L \ R
> 0 for x ∈ R \ L
6= 0 for x ∈ L ∩ R

But this contradicts continuity!
(by the mean-value theorem)

Can embed 1D example in higher
dimensions as well.
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Conclusion

Zooming Out

I Most work on explainability is empirical

I Empirical approach has been very successful in deep learning, but
struggles to find proper foundations for explainability

I Formal analysis is slow and leads to more modest claims, but builds
up solid foundations

Other Noteworthy Formal Results (non-exhaustive list)

I Formal analyses of LIME for other modalities, Anchors, SHAP
[Garreau and Luxburg, 2020, Mardaoui and Garreau, 2021, Lopardo
et al., 2022, Bordt and von Luxburg, 2022]

I No-free-lunch theorem: no local post-hoc method can perform
optimally across all neighborhoods [Han et al., 2022]
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