## Statistics and Machine Learning: Towards a Closer Integration

Tim van Erven



1st Workshop on AI & Mathematics, June 9, 2022

Statistics



Machine Learning





Machine Learning



#### **Truth finding:**

- Estimation
- Uncertainty quantification
- Hypothesis testing
- Prediction
- **.**..

Statistics Machine Learning





#### Truth finding:

- Estimation
- Uncertainty quantification
- Hypothesis testing
- Prediction

Truth too complicated to model exactly:

- Prediction
- ► Fast algorithms



▶ Both care about small risk, and estimate it using empirical risk

### 1. The Sparse Normal Sequence Model

Want to recover signal  $\theta \in \mathbb{R}^n$  from noisy observations  $Y \in \mathbb{R}^n$ :

$$Y_i = \theta_i + \varepsilon_i, \quad i = 1, \dots, n$$
  
 $\varepsilon_i \sim \mathcal{N}(0, 1)$ 

**Sparsity**: nr. of non-zero components s in  $\theta$  is small: s = o(n).

## 1. The Sparse Normal Sequence Model

Want to recover signal  $\theta \in \mathbb{R}^n$  from noisy observations  $Y \in \mathbb{R}^n$ :

$$Y_i = \theta_i + \varepsilon_i, \quad i = 1, \dots, n$$
  
 $\varepsilon_i \sim \mathcal{N}(0, 1)$ 

**Sparsity**: nr. of non-zero components s in  $\theta$  is small: s = o(n).

#### Bayesian prior ideal to model sparsity:

- 1. Draw sparsity level  $s \sim \pi_n$
- 2. Draw subset of non-zero coordinates  $S \subset \{0, 1, ..., n\}$  of size |S| = s uniformly at random.
- 3.  $\theta_i \sim G$  for  $i \in \mathcal{S}$ ,  $\theta_i = 0$  for  $i \notin \mathcal{S}$



## 1. The Sparse Normal Sequence Model

Want to recover signal  $\theta \in \mathbb{R}^n$  from noisy observations  $Y \in \mathbb{R}^n$ :

$$Y_i = \theta_i + \varepsilon_i, \quad i = 1, \dots, n$$
  
 $\varepsilon_i \sim \mathcal{N}(0, 1)$ 

**Sparsity**: nr. of non-zero components s in  $\theta$  is small: s = o(n).

#### Bayesian prior ideal to model sparsity:

- 1. Draw sparsity level  $s \sim \pi_n$
- 2. Draw subset of non-zero coordinates  $S \subset \{0, 1, ..., n\}$  of size |S| = s uniformly at random.
- 3.  $\theta_i \sim G$  for  $i \in \mathcal{S}$ ,  $\theta_i = 0$  for  $i \notin \mathcal{S}$
- ▶ Under suitable conditions on  $\pi_n$  and G, the Bayes posterior distribution on  $\theta$  contracts around the true  $\theta$  at the **optimal rate** [Castillo & Van der Vaart, 2012].
- ▶ But cannot compute this posterior efficiently for  $n \gg 300 \dots$

# 1. The Sparse Normal Sequence Model: Computation [Van Erven, Szabo, 2021]



► Hidden Markov model going back to [Volf, Willems, 1998] in the context of data compression and online machine learning:

$$H_i = (|\{j \in \mathcal{S} : j \leq i\}|, \mathbf{1}_{[i \in \mathcal{S}]})$$

# 1. The Sparse Normal Sequence Model: Computation [Van Erven, Szabo, 2021]



► Hidden Markov model going back to [Volf, Willems, 1998] in the context of data compression and online machine learning:

$$H_i = (|\{j \in \mathcal{S} : j \leq i\}|, \mathbf{1}_{[i \in \mathcal{S}]})$$

- ► Can choose transition probabilities s.t. this **HMM** is equivalent to the Bayesian model, with S encoded in hidden states  $H_1, \ldots, H_n$
- For HMMs with small hidden state there are **efficient algorithms**...

# 1. The Sparse Normal Sequence Model: Computation [Van Erven, Szabo, 2021]



Compute posterior on differential gene expression data with n = 22283 genes in just 2 minutes:



Gene Index (with absolute Z–score in decreasing order)

- ▶ Millions of images: too many to process all at once
- Process one image at a time using stochastic gradient descent

- ▶ Millions of images: too many to process all at once
- ▶ Process one image at a time using stochastic gradient descent

#### **High-dimensional Setting:**

- ▶ Still many more parameters than images (e.g. 25 times as many)
- Statistically obvious: we cannot estimate so many parameters unless we add constraints (e.g. restrict to  $L_p$  ball)

- ▶ Millions of images: too many to process all at once
- ▶ Process one image at a time using stochastic gradient descent

#### **High-dimensional Setting:**

- ▶ Still many more parameters than images (e.g. 25 times as many)
- Statistically obvious: we cannot estimate so many parameters unless we add constraints (e.g. restrict to  $L_p$  ball)
- ▶ But even if you disable all standard regularization, it still works! [Zhang, Bengio, Hardt, Recht, Vinyals, 2017]
- So how are the parameters restricted?

- ▶ Millions of images: too many to process all at once
- ▶ Process one image at a time using stochastic gradient descent

#### **High-dimensional Setting:**

- ▶ Still many more parameters than images (e.g. 25 times as many)
- Statistically obvious: we cannot estimate so many parameters unless we add constraints (e.g. restrict to  $L_p$  ball)
- ▶ But even if you disable all standard regularization, it still works! [Zhang, Bengio, Hardt, Recht, Vinyals, 2017]
- So how are the parameters restricted? By the behavior of the optimization algorithm!

- ▶ Millions of images: too many to process all at once
- ▶ Process one image at a time using stochastic gradient descent

#### **High-dimensional Setting:**

- ▶ Still many more parameters than images (e.g. 25 times as many)
- Statistically obvious: we cannot estimate so many parameters unless we add constraints (e.g. restrict to  $L_p$  ball)
- ▶ But even if you disable all standard regularization, it still works! [Zhang, Bengio, Hardt, Recht, Vinyals, 2017]
- So how are the parameters restricted? By the behavior of the optimization algorithm!

Big open question: Can we **characterize subspace** searched by optimization methods (on realistic inputs) and prove it is **small enough to generalize**? See e.g. [Belkin et al., 2019].

Related work in STAR: Schmidt-Hieber studies generalization of sparse statistical estimators for neural networks.

## 3. Explainable Machine Learning

#### Very new area:

- ▶ Classifier  $f: \mathbb{R}^d \to \{-1, +1\}$
- ▶ User with features x is unhappy about f(x)
- ▶ Goal: explain why f(x)

#### Attribution methods indicate feature importance:



There is no consensus on what importance should mean, so people focus on necessary requirements...

## 3. Explainable Machine Learning: Requirements

#### Suppose the user wants Recourse:

- ightharpoonup User has limited ability to change x into x'
  - E.g. increase their credit score if bank loan was refused
- ▶ Then  $\phi_f(x)$  should be a direction that tells them how to flip the class

#### Robustness:

Similar users should get similar explanations, so want  $\phi_f$  to be continuous.



## 3. Explainable Machine Learning: Requirements

Suppose the user wants **Recourse**:

- ▶ User has limited ability to change x into x'
  - ▶ E.g. increase their credit score if bank loan was refused
- ▶ Then  $\phi_f(x)$  should be a direction that tells them how to flip the class

#### **Robustness:**

Similar users should get similar explanations, so want  $\phi_f$  to be continuous.

### Theorem (Fokkema, De Heide, Van Erven, 2022)

There exist classifiers f for which it is impossible for any attribution method  $\phi_f$  to both provide recourse and be continuous.

- ► See **poster** by Hidde Fokkema today!
- ► Result generalizes beyond classification
- ► Under (a restrictive) condition, we provide an exact characterization of the classifiers *f* that cause problems

#### **Conclusion**

#### **Examples of fruitful interaction between Stats and ML:**

- 1. Normal sequence model: idea from ML solves computational problem in Statistics
- Generalization of deep learning: ideas from ML and Stats can fruitfully combine
- 3. Explainable machine learning: important new direction with room to be the Fisher of explainability

#### Did you know there is a machine learning Netherlands mailing list?

- Subscribe via my website: www.timvanerven.nl
- Use it to announce seminars, vacancies, etc.!