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Perspectives on Data: The Two Cultures

In reference to Breiman, 2001, Statistical Modeling: The Two Cultures

Statistics Machine Learning

Truth finding:

I Estimation

I Uncertainty quantification

I Hypothesis testing

I Prediction

I . . .

Truth too
complicated to
model exactly:

I Prediction

I Fast algorithms
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Perspectives on Data: The Two Cultures

Parameters θ

Risk R(θ)

ε

Stats happy ML happy
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I Both care about small risk, and estimate it using empirical risk
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1. The Sparse Normal Sequence Model

Want to recover signal θ ∈ Rn from noisy observations Y ∈ Rn:

Yi = θi + εi , i = 1, . . . , n

εi ∼ N (0, 1)

Sparsity: nr. of non-zero components s in θ is small: s = o(n).

Bayesian prior ideal to model sparsity:

1. Draw sparsity level s ∼ πn
2. Draw subset of non-zero coordinates S ⊂ {0, 1, . . . , n} of size
|S| = s uniformly at random.

3. θi ∼ G for i ∈ S, θi = 0 for i 6∈ S

3 / 8



1. The Sparse Normal Sequence Model

Want to recover signal θ ∈ Rn from noisy observations Y ∈ Rn:

Yi = θi + εi , i = 1, . . . , n

εi ∼ N (0, 1)

Sparsity: nr. of non-zero components s in θ is small: s = o(n).

Bayesian prior ideal to model sparsity:

1. Draw sparsity level s ∼ πn
2. Draw subset of non-zero coordinates S ⊂ {0, 1, . . . , n} of size
|S| = s uniformly at random.

3. θi ∼ G for i ∈ S, θi = 0 for i 6∈ S

0 20 40 60 80 100

−
5

0
5

Posterior Means

data
truth
posterior mean

3 / 8



1. The Sparse Normal Sequence Model

Want to recover signal θ ∈ Rn from noisy observations Y ∈ Rn:

Yi = θi + εi , i = 1, . . . , n

εi ∼ N (0, 1)

Sparsity: nr. of non-zero components s in θ is small: s = o(n).
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2. Draw subset of non-zero coordinates S ⊂ {0, 1, . . . , n} of size
|S| = s uniformly at random.

3. θi ∼ G for i ∈ S, θi = 0 for i 6∈ S

I Under suitable conditions on πn and G , the Bayes posterior
distribution on θ contracts around the true θ at the optimal rate
[Castillo & Van der Vaart, 2012].

I But cannot compute this posterior efficiently for n� 300 . . .

3 / 8



1. The Sparse Normal Sequence Model:
Computation [Van Erven, Szabo, 2021]

H1 H2 H3 . . . Hn

θ1 θ2 θ3 θn

Y1 Y2 Y3 Yn

I Hidden Markov model going back to [Volf, Willems, 1998] in the
context of data compression and online machine learning:

Hi =
(
|{j ∈ S : j ≤ i}|,1[i∈S]

)

I Can choose transition probabilities s.t. this HMM is equivalent to
the Bayesian model, with S encoded in hidden states H1, . . . ,Hn

I For HMMs with small hidden state there are efficient algorithms...
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1. The Sparse Normal Sequence Model:
Computation [Van Erven, Szabo, 2021]

H1 H2 H3 . . . Hn

θ1 θ2 θ3 θn

Y1 Y2 Y3 Yn

Compute posterior on differential gene expression data with n = 22 283
genes in just 2 minutes:
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2. Computation & Generalization in Deep Learning
Non-convex Optimization:

I Millions of images: too many to process all at once

I Process one image at a time using stochastic gradient descent

High-dimensional Setting:

I Still many more parameters than images (e.g. 25 times as many)

I Statistically obvious: we cannot estimate so many parameters unless
we add constraints (e.g. restrict to Lp ball)

I But even if you disable all standard regularization, it still works!
[Zhang, Bengio, Hardt, Recht, Vinyals, 2017]

I So how are the parameters restricted? By the behavior of the
optimization algorithm!

Big open question: Can we characterize subspace searched by opti-
mization methods (on realistic inputs) and prove it is small enough to
generalize? See e.g. [Belkin et al., 2019].

Related work in STAR: Schmidt-Hieber studies generalization of sparse
statistical estimators for neural networks.
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3. Explainable Machine Learning

Very new area:

I Classifier f : Rd → {−1,+1}
I User with features x is unhappy about f (x)

I Goal: explain why f (x)

Attribution methods indicate feature importance:


x1
x2
...

xd−1
xd




ϕ1

ϕ2

...
ϕd−1
ϕd

 = ϕf (x)

− +

There is no consensus on what importance should mean,
so people focus on necessary requirements...
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3. Explainable Machine Learning: Requirements

Suppose the user wants Recourse:

I User has limited ability to change x into x ′

I E.g. increase their credit score if bank loan was refused

I Then φf (x) should be a direction that tells them how to flip the class

Robustness:

I Similar users should get similar explanations, so want φf to be
continuous.

f(x) = -1 f(x) = +1

decision 
boundary 

x

x’
φ(x) ÷:S
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I E.g. increase their credit score if bank loan was refused

I Then φf (x) should be a direction that tells them how to flip the class

Robustness:

I Similar users should get similar explanations, so want φf to be
continuous.

Theorem (Fokkema, De Heide, Van Erven, 2022)

There exist classifiers f for which it is impossible for any attribution
method φf to both provide recourse and be continuous.

I See poster by Hidde Fokkema today!

I Result generalizes beyond classification

I Under (a restrictive) condition, we provide an exact characterization
of the classifiers f that cause problems
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Conclusion

Examples of fruitful interaction between Stats and ML:

1. Normal sequence model: idea from ML solves computational
problem in Statistics

2. Generalization of deep learning: ideas from ML and Stats can
fruitfully combine

3. Explainable machine learning: important new direction with room to
be the Fisher of explainability

Did you know there is a machine learning Netherlands mailing list?

I Subscribe via my website: www.timvanerven.nl

I Use it to announce seminars, vacancies, etc.!
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