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Explainable Machine Learning

Why did the machine learning system
» Classify my company as high risk for money laundering?
Reject my bank loan?
Predict this patient can safely leave the intensive care?

>

>

» Mistake a picture of a husky for a wolf?

» Reject the profile picture | uploaded to get a public transport card?!
>

IPersonal experience
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Explainable Machine Learning

Why did the machine learning system
» Classify my company as high risk for money laundering?
Reject my bank loan?
Predict this patient can safely leave the intensive care?

>

>

» Mistake a picture of a husky for a wolf?

» Reject the profile picture | uploaded to get a public transport card?!
>

Information-Theoretic Constraints:
» Cannot communicate millions of parameters!

» Can communicate only some and/or need
in common with user

IPersonal experience
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Machine Learning: Binary Classification

X2
» Goal: classify an input x = (xq,...,xg) € R as class —1 or class +1
» Usually by f:R SR,

e.g. predicted class is sign(f(x))
> Classifier f obtained by minimizing error on training data
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Local Post-hoc Explanations

X2

input x to
be explained

X1

> Local: only explain the part of f that is
» Post-hoc: ignore explainability concerns when estimating f
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Local Explanations via Attributions

- +
X1 wr(x)1
X2 or(x)2
: : = pr(x)
Xd—1 Sﬁf(X)d—l
Xd or(x)d

br(x) € R? attributes a weight to each feature, which explains
how important the feature is for the classification of x by 7.
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Local Explanations via Attributions

-+
x1 ] er(x)1
X2 = ©f(x)2
: : = ¢r(x)
Xd-1 | er(X)a

Xd ] or(x)d

#r(x) € RY attributes a weight to each feature, which explains
the feature is

Example: low d, linear f ;
f(X) =0y + Z 0;x;
i=1

or(x)i = 6; could be coefficient of x;

» NB This example is In general ¢¢(x) will depend on x.

But many methods can be viewed as local linearizations of f.
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Example: Gradient-based Explanations

Various gradient methods?

Gradient
Vanilla Integrated Guided BackProp | SmoothGrad

E
S
K
=3
=
£
5
k3
2
3
B
K
8
5

> Vanilla gradient: ¢¢(x) = V£(x)

» SmoothGrad: ¢(x) = Ezn(x,5) [Vf(2)] (Smilkov et al., 2017)
> ..

2Image source: (Smilkov et al., 2017)
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Example: LIME

LIME (Ribeiro, Singh, and Guestrin, 2016): Do local linear approximation

of f near x (optionally in dimensionality reduced space), and report
coefficients

LIME for tabular data:3

Prediction probabilities edible poisonous Feature Value
odor=foul
edible 026 odor=foul
poisonous [ 100 illie-broad

gill-size=broad
stalk-surface-above-ring=silky True
spore-print-color=chocolate

True

stalk-surface-below-ring=silky True

(classifying edibility of mushrooms)

3Image source: https://github.com/marcotcr/lime
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Example: LIME

LIME (Ribeiro, Singh, and Guestrin, 2016): Do local linear approximation
of f near x (optionally in dimensionality reduced space), and report

coefficients

LIME for images:3

¥

A

(a) Original Image (b) Explaining Electric guitar (c) Explaining Acoustic guitar ~ (d) Explaining Labrador

3Ilmage by Ribeiro, Singh, and Guestrin (2016)
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Exciting Times to Work on Explainability

Original Image Manipulated Image

Lots of open issues:
» Easily manipulated
» Explanation methods often disagree

» Plausible looking explanations may
not represent model being explained

(Adebayo et al., 2018) # C\M;’x;,?,_r,
» Unclear for which goal approximation was

marnpulates
methods are useful ' ’

Image by Dombrowski et al., 2019

LIME Method SHAP Method

umME KernelSHAP

Image by Krishna et al., 2022
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Counterfactual Explanations

“If you would have had an income of €40 000 instead of
your loan request would have been approved.”

X2

Counterfactual explanation: x§' = argmin  dist(x, xo)

x:sign(f(x))=+1
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Counterfactual Explanations

“If you would have had an income of €40 000 instead of
your loan request would have been approved.”

X2

Counterfactual explanation: x§' = argmin  dist(x, xo)

x:sign(f(x))=+1

Viewed as attribution method*:  ¢7(x0) = x§ — xo

: cf
4Gives scaled coefficients or(x0)i = d'St(”Xg”’XO)G,- if f is linear
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Explanations with Recourse as their Goal

“If you change your current income of to €40 000,
then your loan request will be approved.”

X2

» Counterfactual methods by telling the user how to
change their features such that f takes their desired value.

12/30



More Realistic Variations

Literature background:
» Original counterfactuals (Wachter, Mittelstadt, and Russell, 2017)
> Robust counterfactuals: if users implement recourse approximately,
they should still switch class (Ustun, Spangher, and Liu, 2019)
> Causal models:

> User can only changes features indirectly via causal model of their
actions (Karimi et al., 2021)

> Steer towards actions that truly improve probability of desired class,
not just classifier decision (Konig, Freiesleben, and Grosse-Wentrup,
2023)

Most discussion in the literature at the

What is the effect at the population level?
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Effect of Recourse on the Population

Before recourse After recourse

What happens to the accuracy of the classifier?

Accuracy matters!

Example: incorrect +1 classifications = users defaulting on loans
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Effect of Recourse

Situation before Recourse:
» User distribution: (X, Y) ~ P
» Classifier f : X — {—1,+1}
> Risk: Rp(f) = P(f(Xo) #Y)

Effect of Recourse:
» User features change from Xy to X
» Need to model use behavior: how does distribution of Y change?
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Modeling User Behavior

P(Y =1|X = x)
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Modeling User Behavior

P(Y =1|X = x)
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Modeling User Behavior

probability of Y after recourse is P(Y|X)
probability of Y after recourse is P(Y|Xp)
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Modeling User Behavior

Examples:
» Credit loan application:

» Compliant: Applicant improves risky behaviour
> Defiant: Applicant tries to “game the system”

» Medical Diagnosis:

» Compliant: Patient improves their health
> Defiant: Patient takes medicine to reduce symptoms

» Job applications:

» Compliant: Applicant improves their skills
» Defiant: Applicant improves their CV

> probability of Y after recourse is P(Y|X)
> probability of Y after recourse is P(Y|Xp)
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Learning-theoretic Framework

Situation before Recourse:
» User distribution: (Xo, Y) ~ P
» Classifier f : X — {—1,+1}
> Risk: Rp(f) = P(f(Xo) #Y)
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Learning-theoretic Framework

User distribution: (Xp, Y) ~ P
Classifier f : X — {-1,+1}
Risk: Rp(f) = P(f(Xo) £ Y)

Users' choice to accept recourse is B € {0,1} with
PI’(B = l‘XQ) = I’(Xo).

Users arrive as before: Xy ~ P
Recourse proposal: X§" = argmin,.¢(,)_ 11 [[x = Xol|
Users' choice to accept is B € {0,1} with Pr(B = 1|Xp) = r(Xo):

X =(1-B)Xy+ BX§'
Q is the resulting distribution of Xy, B, X, Y
Risk: Ro(f) = Q(f(X)#Y)
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Effect of Recourse on Population-level Accuracy

* +1 correct .
» —1 correct DL
x +1 wrong OO 5 .

| Ro(fp) = 0.30

Before recourse After recourse
(compliant users)

» Simulation with Gaussian data
>

» Many more customers defaulting on their loans!
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Recourse Increases the Risk

fp = argmin Rp(f)
f

Bayes-optimal _
classifier under P: £5(x) — +1 if P(Y =1|X =x) > 1/2,
p(x) = :
—1 otherwise.
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Recourse Increases the Risk

fp = arg min Rp(f)
Bayes-optimal f _
classifier under P: £3(x) = +1 i P(Y =1|X =x) > 1/2,
p\X) = .
—1 otherwise.
Regularity conditions:
> Well-defined setup: {x € X : f3(x) = +1} is closed
» Continuous conditional probabilities: P(Y = 1|Xp = x) = 1/2 for all
x on the decision boundary of fg

Theorem

Then, both if the users are defiant and if the users are compliant,

Rao(fp) = Re(fp).

The inequality is strict if the probability of recourse in the negative class
is non-zero: P(B =1, f5(Xp) = —1) > 0.
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Recourse Increases the Risk
Regularity conditions:

> Well-defined setup: {x € X : fi(x) = +1} is closed

> Continuous conditional probabilities: P(Y = 1|Xp = x) = 1/2 for all
x on the decision boundary of 3

Then, both if the users are defiant and if the users are compliant,

Defiant case:
Ro(fp) — Re(fp)

=P(B=1,f(X)=-1,Y=-1)—P(B=1,fi(X) = —1,Y = +1)
> 0.

Compliant case:

Ro(fp) — Re(fp)

IP(B=1,f5(X) = —1) — P(B=1,f(Xo) = —1,Y = 1) > 0.

20/30



Proof Idea: Defiant Case

P(Y =1|X = x)

X

> Defiant case: Q(Y|X,Xo) = P(Y|Xo)
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Proof ldea: Defiant Case

P(Y = 1|X = x)

» Defiant case: Q(Y|X,Xo) = P(Y|Xop)
» Recourse misclassifies users from class —1 as class +1
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Proof Idea: Compliant Case

P(Y = 11X = x)
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Proof Idea: Compliant Case

PLY # R (IIX = )

0.8 -

0.6 | .
el 1 +1 |
0.2 f

» Compliant case: Q(Y|X,Xp) = P(Y|X)
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Proof Idea: Compliant Case

P(Y # F(9IX =)

1 11|

0.4 r

0.2 r

» Compliant case: Q(Y|X,Xp) = P(Y|X)

» Recourse moves users from high certainty to lowest certainty region
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X2

Strategic Classification

Recourse
accepted

decision boundary
N - - - - effective decision boundary

X1

» Suppose recourse accepted deterministically within distance D of
decision boundary

25 /30



Strategic Classification

Recourse
accepted

—— decision boundary
- - - - effective decision boundary

X2

» Suppose recourse accepted deterministically within distance D of
decision boundary

> by moving decision boundary back by
distance D
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Strategic Classification

—— decision boundary
- - - - effective decision boundary

Recourse
accepted

X2

» Suppose recourse accepted deterministically within distance D of
decision boundary

>
distance D

by moving decision boundary back by

Definition

A set of classifiers F is if for any f € F there
exists a unique f’ € F such that the decision boundary for f without
recourse is equal to the effective decision boundary of f’ with recourse.
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Strategic Classification

Assumptions:

» F invariant under recourse

Theorem (Defiant Case)

Recourse has no effect:
min Ro,(f) = min Rp(f).

> Write Qr instead of @ to emphasize dependence of the effect of
recourse on f.
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Strategic Classification
Assumptions:
» F invariant under recourse

Theorem (Compliant Case)

Let f € arg mingc» Rp(f) with corresponding f' € F that has the same
effective decision boundary after recourse. Then

. _ - B
min R, (f) < R, (f') = min Re(f) — A,

where A = Pr (f(X Y) —  Pr (f(X Y).
(xo,y>~P((°)7é ) (XO,Y)~Q,/((O)7£ )

» Think of Q¢ as moving users away from the decision boundary
compared to P, so likely that A > 0.

» Only case where we find that recourse is in terms of
accuracy.

» But cancels the effect of recourse and does not help any users from
the original —1 class. Not really what we imagined. ..
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Summary

Algorithmic Recourse:
» Provides explanations that help users overturn an unfavorable
decision by a machine learning system
> Standard example: rejected loan application

Effects of Providing Algorithmic Recourse:
> Classifier
> Not just for defiant users, but also for compliant users
> Strategizing may avoid reduced accuracy

> But effect is: same customers get a loan, but some have to
to get it
» Does not help any customers who originally did not get a loan
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Discussion

Conclusion: Algorithmic recourse is

Remark:

» This seems , so changing the method will not
fix it
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» This seems , so changing the method will not
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Possible ways forward:
1. Identify applications in which classifier accuracy is less important
(for the people receiving recourse)

> Not: the standard loan application example
> Alternative: journal paper acceptance, profile picture acceptance for
public transport card, ...
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Discussion

Conclusion: Algorithmic recourse is

Remark:

» This seems , so changing the method will not
fix it

Possible ways forward:
1. Identify applications in which classifier accuracy is less important
(for the people receiving recourse)

> Not: the standard loan application example
> Alternative: journal paper acceptance, profile picture acceptance for
public transport card, ...

2. Replace recourse by something else

> For instance: contestability, which allows users to appeal incorrect
decisions
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