University of Tiibingen, November 23, 2022

Impossibility in Explainable Machine Learning:

Attribution-based Explanations that
Provide Recourse Cannot be Robust

ol UNIVERSITY
“® OF AMSTERDAM

Tim van Erven

Joint work with:

Hidde Fokkema Rianne de Heide

Explainable Machine Learning

Why did the machine learning system
» Classify my company as high risk for money laundering?
Reject my bank loan?
Give a certain medical diagnosis?

>

>

> Make a certain mistake?

» Reject the profile picture | uploaded to get a public transport card?!
>

IPersonal experience
2/21

Explainable Machine Learning

Why did the machine learning system
» Classify my company as high risk for money laundering?
Reject my bank loan?
Give a certain medical diagnosis?

>

>

> Make a certain mistake?

» Reject the profile picture | uploaded to get a public transport card?!
>

Information-Theoretic Constraints:
» Cannot communicate millions of parameters!

» Can communicate only some and/or need
in common with user

IPersonal experience

2/21

Local Post-hoc Explanations

X2

input x to
be explained

X1

> Local: only explain the part of f that is
» Post-hoc: ignore explainability concerns when estimating f.

3/21

Local Explanations via Attributions

- +
X1 ©r(x)1
X2 or(x)2
: : = pr(x)
Xd—1 Sﬁf(X)d—l
Xd or(x)d

br(x) € R? attributes a weight to each feature, which explains
how important the feature is for the classification of x by 7.

4/21

Local Explanations via Attributions

-+
x1] er(x)1
X2 = ©f(x)2
: : = ¢r(x)
Xd-1 | er(X)a

Xd] or(x)d

#r(x) € RY attributes a weight to each feature, which explains
the feature is

Example: low d, linear f

d
f(X) =0y + Z 0;:x;
i=1

or(x)i = 6; could be coefficient of x;

> NB This example is In general ¢¢(x) will depend on x.
But many methods can be viewed as local linearizations of f.

4/21

Examples of Local Attribution Methods

Example Attribution Method: LIME

LIME: Do local linear approximation of f near x (optionally in
dimensionality reduced space), and report coefficients

LIME for tabular data:?

Prediction probabilities edible poisonous
edibl odor=foul
ible

poisonous [T] 1.00

Feature

odor=foul
gill-size=broad]
0131

gill-size=broad
stalk-surface-above-ring=silkky True

spore-print-color=chocolate

True
stalk-surface-below-ring=silky True

(classifying edibility of mushrooms)

2Image source: https://github.com/marcotcr/lime

6/21

https://github.com/marcotcr/lime

Example: Gradient-based Explanations

Various gradient methods>

Gradient
Vanilla Integrated Guided BackProp | SmoothGrad

£
il
=
S
=
=
S
*
5
£
%
e
E
s
K
@
5

e

> Vanilla gradient: ¢¢(x) = V£(x)
» SmoothGrad: ¢r(x) = Ez n(x,5)[VF(Z)]
> ...

3Image source: [Smilkov et al., 2017]
7/21

Example: Counterfactual Explanations

“If you would have had an income of €40 000 instead of
your loan request would have been approved.”

X2

Counterfactual explanation: X = argmin dist(x, x)
x':sign(f(x'))=+1

8/21

Example: Counterfactual Explanations

“If you would have had an income of €40 000 instead of
your loan request would have been approved.”

X2

-1

Counterfactual explanation: X = argmin dist(x, x)
x':sign(f(x'))=+1

Viewed as attribution method: ¢r(x) = X — x

8/21

How Do We Evaluate Explanations?

» When are they good? Are some better than others?
» What is even the goal they are trying to achieve?

Explanations with Recourse as their Goal

“If you change your current income of to €40 000,
then your loan request will be approved.”

F(x) =0 -|-]_

X2

-1

> Attribution methods if they tell the user how to
change their features such that f takes their desired value.

10/21

Recourse Sensitivity

» Our definition: weakest possible requirement for providing recourse.

X2

11/21

Recourse Sensitivity

» Our definition: weakest possible requirement for providing recourse.

X2

X1

1. Assume user can change their features by at most some § > 0

11/21

Recourse Sensitivity

» Our definition: weakest possible requirement for providing recourse.

X2

X1

1. Assume user can change their features by at most some § > 0

2. ¢f(x) can point in within
distance §, and length does not matter as long as it is > 0.

3. If no direction provides recourse, then ¢¢(x) can be arbitrary.

11/21

Recourse Sensitivity: Example

Profile picture is accepted if contrast
between profile and background is large enough:

(a) Accepted profile picture (b) Rejected profile picture

12/21

Recourse Sensitivity: Example

Profile picture is accepted if contrast
between profile and background is large enough:

(a) Accepted profile picture (b) Rejected profile picture

12/21

Recourse Sensitivity: Example

Profile picture is accepted if contrast
between profile and background is large enough:

vl

(a) Accepted profile picture

(b) Rejected profile picture

/ \l’x<:i(l(vs Ru('mp \

Profile Picture Gradient, LIME manual LIME auto SHAP

F15]s et

\ Provides No Recourse! /

12/21

Robustness of Explanations

Compare:

1. “If you change your current income of to €40 000, then
your loan request will be approved.”

2. "If you change your current income of to €45 000, then
your loan request will be approved.”

Minor changes in x should not cause big changes in explanations!

13/21

Robustness of Explanations

Compare:

1. “If you change your current income of to €40 000, then
your loan request will be approved.”

2. "If you change your current income of to €45 000, then
your loan request will be approved.”

Minor changes in x should not cause big changes in explanations!

Robustness: If f is continuous, then ¢¢ should also be
(e.g. survey of recourse by [Karimi et al., 2021])

13/21

Impossibility:

No Single Method Can Be
Both Recourse Sensitive and Robust

Impossibility in Binary Classification

Suppose the user wants to switch to the +1 class in a binary
classification setting.

Theorem (For Binary Classification)

For any § > 0 there exists a continuous function f such that no
attribution method ¢¢ can be both recourse sensitive and continuous.

15/21

Proof Sketch

L = {x : recourse possible by moving at most ¢ left}

R = {x : recourse possible by moving at most ¢ right}

16 /21

Proof Sketch

L = {x : recourse possible by moving at most ¢ left}
R = {x : recourse possible by moving at most ¢ right}

Recourse sensitivity implies:

<0 forxel\R
Pr(x)¢ >0 forxe R\ L
#0 forxelNR

16 /21

Proof Sketch

N f(x)
3¢
50
>
X

L = {x : recourse possible by moving at most ¢ left}
R = {x : recourse possible by moving at most ¢ right}

Recourse sensitivity implies: But this I

<0 forxel\R (by the mean-value theorem)

¢r(x) >0 forxeR\L Can embed 1D example in higher
#0 forxelNR dimensions as well.

16 /21

Characterizing Impossible Functions in 1D

L = {x : recourse possible by moving at most ¢ left}

R = {x : recourse possible by moving at most 4 right}

Theorem

Let d =1, 6 > 0. Then there exists a recourse sensitive and
continuous attribution method ¢« for a function f if and only if there
exist L C L and R C R such that

1. LUR=LUR and
2. [and R are

Sets A and B are separated if cl(A)N B =0 and Ancl(B) = 0.

17/21

Characterizing Impossible Functions in 1D

L = {x : recourse possible by moving at most ¢ left}
R = {x : recourse possible by moving at most 4 right}

Theorem

Let d =1, 6 > 0. Then there exists a recourse sensitive and
continuous attribution method ¢« for a function f if and only if there
exist L C L and R C R such that

1. LUR=LUR and
2. [and R are

Sets A and B are separated if cl(A)N B =0 and Ancl(B) = 0.

Proof ldeas:
» [and R determine the sign of ¢r on LUR

> Separatedness gives just enough room for ¢r to cross through 0 in
between L and R

17/21

Recourse Beyond Classification

Utility Function:
User with input x is satisfied with point y if ur(x,y) > 7 for some 7 > 0.

Examples:
» Classification with desired class +1: ur(x,y) := f(y) > +1
> Absolute increase: ur(x,y) :=f(y) —f(x) >

> Relative increase by p x 100%: ur(x,y) := % >1+p

18/21

Impossibility for General Utility Functions

Theorem (For General Utility Functions)
Let 6 > 0,7 > 0. Assume that
1. ur(x,y) = d(f(x),f(y)) depends on x,y only via f;
2. There exist z1,2z, € R for which i(z1,22) > 7 and i(z1,z1) < 7.

Then there exists a continuous function f such that no attribution
method ¢f can be both recourse sensitive and robust.

19/21

Impossibility for General Utility Functions

Theorem (For General Utility Functions)

Let 6 > 0,7 > 0. Assume that

1. ur(x,y) = d(f(x),f(y)) depends on x,y only via f;

2. There exist z1,2z, € R for which i(z1,22) > 7 and i(z1,z1) < 7.

Then there exists a continuous function f such that no attribution
method ¢f can be both recourse sensitive and robust.

Proof ldea:

> Like impossibility for binary classification with this f:

4

L

m

19/21

Conclusion

Summary:
» Exist f for which recourse sensitivity 4+ robustness is , for
classification and other utility functions
» Exact of impossible f, but only
» Further extensions in the paper:

» Include constraints on user actions

> Characterisation in arbitrary dimensions when user can only change a
single feature

» Sufficient conditions on f under which impossibility is avoided

20/21

Conclusion

Summary:
» Exist f for which recourse sensitivity 4+ robustness is , for
classification and other utility functions
» Exact of impossible f, but only

» Further extensions in the paper:

» Include constraints on user actions
> Characterisation in arbitrary dimensions when user can only change a

single feature
» Sufficient conditions on f under which impossibility is avoided

Discussion:
Is impossibility a really bad problem?
Not, but need to of explainability for recourse. E.g.:

» Accept that robustness sometimes fails
> Set-valued explanations

» Randomized explanations

> ...

20/21

References

» H. Fokkema, R. de Heide and T. van Erven. Attribution-based
Explanations that Provide Recourse Cannot be Robust,
ArXiv:2205.15834 preprint, 2022.

Other references:

A.-H. Karimi, G. Barthe, B. Schélkopf, and I. Valera. A survey of algorithmic
recourse: definitions, formulations, solutions, and prospects. arXiv preprint
arXiv:2010.04050, 2021.

D. Smilkov, N. Thorat, B. Kim, F. Viégas, and M. Wattenberg. Smoothgrad:
removing noise by adding noise. ArXiv:1706.03825, 2017.

21/21

	References

