## Impossibility in Explainable Machine Learning:

Attribution-based Explanations that Provide Recourse Cannot be Robust

Tim van Erven



#### Joint work with:



Hidde Fokkema



Rianne de Heide

## **Explainable Machine Learning**

#### The Need for Explanations:

Why did the machine learning system

- Classify my company as high risk for money laundering?
- ► Reject my bank loan?
- ► Give a certain medical diagnosis?
- Make a certain mistake?
- ▶ Reject the profile picture I uploaded to get a public transport card?¹

<sup>&</sup>lt;sup>1</sup>Personal experience

## **Explainable Machine Learning**

#### The Need for Explanations:

Why did the machine learning system

- Classify my company as high risk for money laundering?
- ► Reject my bank loan?
- ► Give a certain medical diagnosis?
- Make a certain mistake?
- ▶ Reject the profile picture I uploaded to get a public transport card?¹
- **.**..

#### Information-Theoretic Constraints:

- Cannot communicate millions of parameters!
- Can communicate only some relevant aspects and/or need high-level concepts in common with user

<sup>&</sup>lt;sup>1</sup>Personal experience

## **Local Post-hoc Explanations**



- **Local:** only explain the part of f that is (most) relevant for x.
- **Post-hoc:** ignore explainability concerns when estimating f.

## **Local Explanations via Attributions**



 $\phi_f(x) \in \mathbb{R}^d$  attributes a weight to each feature, which explains how important the feature is for the classification of x by f.

## **Local Explanations via Attributions**



 $\phi_f(x) \in \mathbb{R}^d$  attributes a weight to each feature, which explains how important the feature is for the classification of x by f.

## Example: low d, linear f $f(x) = \theta_0 + \sum_{i=1}^d \theta_i x_i$ $\phi_f(x)_i = \theta_i \qquad \text{could be coefficient of } x_i$

NB This example is **too** simple! In general  $\phi_f(x)$  will depend on x. But many methods can be viewed as local linearizations of f.

# Examples of Local Attribution Methods

## **Example Attribution Method: LIME**

**LIME:** Do local linear approximation of f near x (optionally in dimensionality reduced space), and report coefficients





(classifying edibility of mushrooms)

<sup>&</sup>lt;sup>2</sup>Image source: https://github.com/marcotcr/lime

## **Example: Gradient-based Explanations**

#### Various gradient methods<sup>3</sup>



- ▶ Vanilla gradient:  $\phi_f(x) = \nabla f(x)$
- ▶ SmoothGrad:  $\phi_f(x) = \mathbb{E}_{Z \sim \mathcal{N}(x, \Sigma)}[\nabla f(Z)]$
- **.**...

<sup>&</sup>lt;sup>3</sup>Image source: [Smilkov et al., 2017]

### **Example: Counterfactual Explanations**

"If you would have had an income of €40 000 instead of €35 000, your loan request would have been approved."



Counterfactual explanation: 
$$\tilde{x} = \underset{x': \text{sign}(f(x')) = +1}{\text{arg min}} \operatorname{dist}(x', x)$$

### **Example: Counterfactual Explanations**

"If you would have had an income of €40 000 instead of €35 000, your loan request would have been approved."



**Counterfactual explanation:**  $\tilde{x} = \underset{x': \text{sign}(f(x')) = +1}{\text{arg min}} \operatorname{dist}(x', x)$ 

Viewed as attribution method:  $\phi_f(x) = \tilde{x} - x$ 

## **How Do We Evaluate Explanations?**

- ▶ When are they good? Are some better than others?
- ▶ What is even the **goal** they are trying to achieve?

## **Explanations with Recourse as their Goal**

"If you change your current income of €35 000 to €40 000, then your loan request will be approved."



Attribution methods provide recourse if they tell the user how to change their features such that *f* takes their desired value.

## **Recourse Sensitivity**

▶ Our definition: weakest possible requirement for providing recourse.



## **Recourse Sensitivity**

▶ Our definition: weakest possible requirement for providing recourse.



1. Assume user can change their features by at most some  $\delta > 0$ 

## **Recourse Sensitivity**

Our definition: weakest possible requirement for providing recourse.



- 1. Assume user can change their features by at most some  $\delta > 0$
- 2.  $\phi_f(x)$  can point in any direction that provides recourse within distance  $\delta$ , and length does not matter as long as it is > 0.
- 3. If no direction provides recourse, then  $\phi_f(x)$  can be arbitrary.

## **Recourse Sensitivity: Example**

Profile picture is accepted if contrast between profile and background is large enough:



(a) Accepted profile picture



(b) Rejected profile picture

### **Recourse Sensitivity: Example**

Profile picture is accepted if contrast between profile and background is large enough:



(a) Accepted profile picture



(b) Rejected profile picture

### **Recourse Sensitivity: Example**

Profile picture is accepted if contrast between profile and background is large enough:







(b) Rejected profile picture



### **Robustness of Explanations**

#### Compare:

- 1. "If you change your current income of €35 000 to €40 000, then your loan request will be approved."
- 2. "If you change your current income of €35 001 to €45 000, then your loan request will be approved."

Minor changes in x should not cause big changes in explanations!

## **Robustness of Explanations**

#### Compare:

- 1. "If you change your current income of €35 000 to €40 000, then your loan request will be approved."
- 2. "If you change your current income of €35 001 to €45 000, then your loan request will be approved."

Minor changes in x should not cause big changes in explanations!

**Robustness:** If f is continuous, then  $\phi_f$  should also be **continuous**. (e.g. survey of recourse by [Karimi et al., 2021])

## Impossibility:

## No Single Method Can Be Both Recourse Sensitive and Robust

## Impossibility in Binary Classification

Suppose the user wants to switch to the +1 class in a binary classification setting.

#### Theorem (For Binary Classification)

For any  $\delta > 0$  there exists a continuous function f such that no attribution method  $\phi_f$  can be both recourse sensitive and continuous.

#### **Proof Sketch**



 $L = \{x : \text{recourse possible by moving at most } \delta \text{ left}\}$   $R = \{x : \text{recourse possible by moving at most } \delta \text{ right}\}$ 

#### **Proof Sketch**



 $L = \{x : \text{recourse possible by moving at most } \delta \text{ left}\}$  $R = \{x : \text{recourse possible by moving at most } \delta \text{ right}\}$ 

#### Recourse sensitivity implies:

$$\phi_f(x) \begin{cases} < 0 & \text{for } x \in L \setminus R \\ > 0 & \text{for } x \in R \setminus L \\ \neq 0 & \text{for } x \in L \cap R \end{cases}$$

#### **Proof Sketch**



 $L = \{x : \text{recourse possible by moving at most } \delta \text{ left}\}\$  $R = \{x : \text{recourse possible by moving at most } \delta \text{ right}\}\$ 

#### Recourse sensitivity implies:

$$\phi_f(x) \begin{cases} < 0 & \text{for } x \in L \setminus R \\ > 0 & \text{for } x \in R \setminus L \\ \neq 0 & \text{for } x \in L \cap R \end{cases}$$

But this contradicts continuity! (by the mean-value theorem)

Can embed 1D example in higher dimensions as well.

## **Characterizing Impossible Functions in 1D**

 $L = \{x : \text{recourse possible by moving at most } \delta \text{ left}\}$   $R = \{x : \text{recourse possible by moving at most } \delta \text{ right}\}$ 

#### Theorem

Let d=1,  $\delta>0$ . Then there exists a **recourse sensitive** and **continuous** attribution method  $\phi_f$  for a function f if and only if there exist  $\tilde{L}\subseteq L$  and  $\tilde{R}\subseteq R$  such that

- 1.  $\tilde{L} \cup \tilde{R} = L \cup R$  and
- 2.  $\tilde{L}$  and  $\tilde{R}$  are separated.

Sets A and B are separated if  $cl(A) \cap B = \emptyset$  and  $A \cap cl(B) = \emptyset$ .

## **Characterizing Impossible Functions in 1D**

 $L = \{x : \text{recourse possible by moving at most } \delta \text{ left}\}\$  $R = \{x : \text{recourse possible by moving at most } \delta \text{ right}\}\$ 

#### Theorem

Let d=1,  $\delta>0$ . Then there exists a **recourse sensitive** and **continuous** attribution method  $\phi_f$  for a function f if and only if there exist  $\tilde{L}\subseteq L$  and  $\tilde{R}\subseteq R$  such that

- 1.  $\tilde{L} \cup \tilde{R} = L \cup R$  and
- 2.  $\tilde{L}$  and  $\tilde{R}$  are separated.

Sets A and B are separated if  $cl(A) \cap B = \emptyset$  and  $A \cap cl(B) = \emptyset$ .

#### **Proof Ideas:**

- $ightharpoonup ilde{L}$  and  $ilde{R}$  determine the sign of  $\phi_f$  on  $L \cup R$
- Separatedness gives just enough room for  $\phi_f$  to cross through 0 in between  $\tilde{I}$  and  $\tilde{R}$

## **Recourse Beyond Classification**

#### **Utility Function:**

User with input x is satisfied with point y if  $u_f(x, y) \ge \tau$  for some  $\tau \ge 0$ .

#### **Examples:**

- ▶ Classification with desired class +1:  $u_f(x, y) := f(y) \ge +1$
- ▶ Absolute increase:  $u_f(x, y) := f(y) f(x) \ge \tau$
- ▶ Relative increase by  $p \times 100\%$ :  $u_f(x,y) := \frac{f(y)}{f(x)} \ge 1 + p$

## Impossibility for General Utility Functions

#### Theorem (For General Utility Functions)

Let  $\delta > 0, \tau \geq 0$ . Assume that

- 1.  $u_f(x,y) = \tilde{u}(f(x),f(y))$  depends on x,y only via f;
- 2. There exist  $z_1, z_2 \in \mathbb{R}$  for which  $\tilde{u}(z_1, z_2) \ge \tau$  and  $\tilde{u}(z_1, z_1) < \tau$ .

Then there exists a continuous function f such that no attribution method  $\phi_f$  can be both recourse sensitive and robust.

## Impossibility for General Utility Functions

#### Theorem (For General Utility Functions)

Let  $\delta > 0, \tau \geq 0$ . Assume that

- 1.  $u_f(x,y) = \tilde{u}(f(x),f(y))$  depends on x, y only via f;
- 2. There exist  $z_1, z_2 \in \mathbb{R}$  for which  $\tilde{u}(z_1, z_2) \geq \tau$  and  $\tilde{u}(z_1, z_1) < \tau$ .

Then there exists a continuous function f such that no attribution method  $\phi_f$  can be both recourse sensitive and robust.

#### Proof Idea:

Like impossibility for binary classification with this *f*:



#### **Conclusion**

#### **Summary:**

- Exist f for which recourse sensitivity + robustness is impossible, for classification and other utility functions
- Exact characterisation of impossible f, but only for 1D
- Further extensions in the paper:
  - Include constraints on user actions
  - Characterisation in arbitrary dimensions when user can only change a single feature
  - ▶ Sufficient conditions on *f* under which impossibility is avoided

#### **Conclusion**

#### **Summary:**

- Exist f for which recourse sensitivity + robustness is impossible, for classification and other utility functions
- Exact characterisation of impossible f, but only for 1D
- ► Further extensions in the paper:
  - Include constraints on user actions
  - Characterisation in arbitrary dimensions when user can only change a single feature
  - Sufficient conditions on f under which impossibility is avoided

#### **Discussion:**

Is impossibility a really bad problem?

Not, but need to refine formal goals of explainability for recourse. E.g.:

- Accept that robustness sometimes fails
- Set-valued explanations
- Randomized explanations
- **.**..

#### References

► H. Fokkema, R. de Heide and T. van Erven. Attribution-based Explanations that Provide Recourse Cannot be Robust, ArXiv:2205.15834 preprint, 2022.

#### Other references:

- A.-H. Karimi, G. Barthe, B. Schölkopf, and I. Valera. A survey of algorithmic recourse: definitions, formulations, solutions, and prospects. arXiv preprint arXiv:2010.04050, 2021.
- D. Smilkov, N. Thorat, B. Kim, F. Viégas, and M. Wattenberg. Smoothgrad: removing noise by adding noise. *ArXiv:1706.03825*, 2017.