WIPFOR, 6 June 2013

Making Regional Forecasts Add Up

Tim van Erven^{1,2}

Joint work with: Jairo Cugliari²

Regional Electricity Consumption

We want to forecast:

1. Electricity consumption in K regions

2. The total consumption of those regions

(A "region" could be any group of customers.
- E.g. customers with the same contract.)

Measuring Performance

- Real consumptions
 - **Regions**: $y = (y_1, ..., y_K)$
 - Total: $y_* = y_1 + \ldots + y_K$
- Predictions
 - Regions: $\hat{y} = (\hat{y}_1, \dots, \hat{y}_K)$
 - Total: \hat{y}_*
- Weighted squared loss

$$\ell(y,(\hat{y},\hat{y}_*)) = \sum_{k=1}^{K} a_k (y_k - \hat{y}_k)^2 + a_* (y_* - \hat{y}_*)^2$$

Measuring Performance

Real consumptions

- **Regions**: $y = (y_1, ..., y_K)$

- Total:
$$y_* = y_1 + \ldots + y_K$$

- Predictions
 - Regions: $\hat{y} = (\hat{y}_1, \dots, \hat{y}_K)$ - Total: \hat{y}_*

k=1

 Weighted squared loss K

Weights represent electricity network configurations For example: $a_k = 1$ for all k $a_* = K$ $\ell(y,(\hat{y},\hat{y}_*)) = \sum a_k(y_k - \hat{y}_k)^2 + a_*(y_* - \hat{y}_*)^2$

The Operational Constraint

Prediction for the total = sum of predictions for the regions

 $\hat{y}_* = \hat{y}_1 + \ldots + \hat{y}_K$

Imposed, for example, in the Global Energy Forecasting Competition 2012 on Kaggle.com

The Forecasters' Rebellion

- Constraint: $\hat{y}_* = \hat{y}_1 + \ldots + \hat{y}_K$
 - Maybe the total is easier to predict than the regions...
 - What if we have a better predictor for the total consumption?

We don't want this constraint!

A Peace Treaty Allowing a Separation of Concerns

- Forecasters produce *ideal* predictions $\bar{y} = (\bar{y}_1, \dots, \bar{y}_K, \bar{y}_*)$
- Map to predictions that satisfy the constraint
 - Regions: $\hat{y} = (\hat{y}_1, \dots, \hat{y}_K)$
 - Total: $\hat{y}_* = \hat{y}_1 + \ldots + \hat{y}_K$

Related Work

• Let $z = \bar{y}_* - \sum_k \bar{y}_k$ measure how much we violate the constraint

• HTS [Hyndman *et al*, 2011]: $\hat{y}_k = \bar{y}_k + \frac{1}{K+1}z$

- Disadvantages:
 - Designed under probabilistic assumptions about distribution of predictions and consumptions
 - Does not take into account weights a_k of the regions and of the total $a_*!$

Difference between ideal and real loss:

$$\ell(y,\hat{y}) - \ell(y,\bar{y})$$
 (1)

where $\hat{y} = (\hat{y}_1, \dots, \hat{y}_K, \sum_k \hat{y}_k)$ satisfies the constraint

- Idea: model as a zero-sum game
 - We first choose our predictions \hat{y}
 - Then an opponent chooses y to make (1) as large as possible

Difference between ideal and real loss:

$$\ell(y,\hat{y}) - \ell(y,\bar{y})$$
 (1)

where $\hat{y} = (\hat{y}_1, \dots, \hat{y}_K, \sum_k \hat{y}_k)$ satisfies the constraint

- Idea: model as a zero-sum game
 - We first choose our predictions \hat{y}
 - Then an opponent chooses y to make (1) as large as possible
- No probabilistic assumptions!

• The optimal move chooses \hat{y} to achieve $\min_{\hat{y}} \max_{y} \left\{ \ell(y, \hat{y}) - \ell(y, \bar{y}) \right\}$

• Assume confidence bands:

 $y_k \in [\bar{y}_k - B_k, \bar{y}_k + B_k]$

• The optimal move chooses \hat{y} to achieve

$$\min_{\hat{y}} \max_{y} \left\{ \ell(y, \hat{y}) - \ell(y, \bar{y}) \right\}$$

Assume confidence bands:

Recover HTS if B big enough

$$y_k \in [\bar{y}_k - B_k, \bar{y}_k + B_k] /$$

Example: If $B_1 = \ldots = B_K = B$ and $a_1 = \ldots = a_K = a_*$ $\hat{y}_k = \bar{y}_k + \left[\frac{1}{K+1}z\right]_B$ where $z = \bar{y}_* - \sum_k \bar{y}_k$ $[x]_B = \min\{B, \max\{-B, x\}\}$

Non-uniform Weights: L2-projection

• If confidence bands *B_k* are sufficiently large:

$$\hat{y}_k = \bar{y}_k + \frac{1/a_k}{1/a_* + \sum_{k'} 1/a_{k'}} z$$

- This is the L2-projection
 - of \bar{y} unto the hyperplane of predictions satisfying summation constraint,
 - with axes rescaled to take into account the region weights a_k, a_*
- In simulations we see that GTOP exactly predicts like this already for very small B_k.

General Computation

- In general no closed-form solution for GTOP, but can rewrite as LASSO optimization problem.
- Size of problem depends on number of regions K
- Standard software to quickly compute LASSO solutions can deal with very large problems; K is typically much smaller

Experiments with Simulated Data

- K = 2 regions: $y_1 = 1 + 5x + \sigma\xi + \tau\zeta_1$ $y_2 = 1 + 5x - \sigma\xi + \tau\zeta_2$
- Noise r.v. ξ, ζ_1, ζ_2 are uniform on [-1,1]
- Parameters σ, τ control amount of noise

• Train set:
$$x \in \left\{\frac{1}{100}, \frac{2}{100}, \dots, 1\right\}$$

• Test set: $x \in \left\{1 + \frac{1}{100}, 1 + \frac{2}{100}, \dots, 2\right\}$

Ideal Predictions

• For the regions (\bar{y}_1, \bar{y}_2) :

- Fit linear function $y = \beta_0 + \beta_1 x$ to the data

- Use LASSO to estimate β_0, β_1 per region

For the total (y
_{*}), y
₁ + y
₂ already very good predictor. How do we do better???

Ideal Predictions

- For the regions (\bar{y}_1, \bar{y}_2) :
 - Fit linear function $y = \beta_0 + \beta_1 x$ to the data
 - Use LASSO to estimate β_0, β_1 per region
- For the total (y
 _{*}), y
 ₁ + y
 ₂ already very good predictor. How do we do better???
 - 1. Fit $y = \beta_0 + \beta_1 x + \beta_2 \bar{y}_1 + \beta_3 \bar{y}_2$ with LASSO
 - 2. Regularize by

 $|\beta_0| + |\beta_1| + |\beta_2 - 1| + |\beta_3 - 1|$

– Behaves like $\bar{y}_1 + \bar{y}_2$ unless data say otherwise

Results

GTOP calibration

- B_k are set to maximum absolute value of residuals on train set

Loss HTS – loss GTOP summed over test set

Summary

- We want to forecast:
 - Electricity consumption in K regions
 - The total consumption of those regions
- Unpleasant operational constraint:
 - prediction for the total
 = sum of regional predictions

- Approach:
 - Ignore the constraint to get ideal predictions
 - Use GTOP to adjust ideal predictions to satisfy the constraint

Experiment with EDF data

- The data
 - K = 17 groups of customers
 - Half-hourly energy consumption records
 - Train set: 1 jan 2004 to 31 dec 2007
 - Test set: 1 dec 2008 to 31 dec 2009
- The model (presented yesterday by Jairo)
 - Non-parametric functional model
 - Based on matching similar contexts in previous observations

Preliminary Results

- GTOP calibration
 - B_k are set heuristically as $0.01 \times y_k$
- Preliminary results
 - Ideal loss of \bar{y} vs GTOP loss
 - Desired outcome: GTOP should not be much worse than \bar{y}
 - GTOP actually reduces the mean loss by 2.5% compared to $\bar{y}\,!$