
The Mathematics of Machine Learning

Homework Set 6

Due 20 April 2023 before 13:00
via Canvas

You are allowed to work on this homework in pairs. One person per pair
submits the answers via Canvas. Make sure to put both names on the submis-
sion.

1 The Benefits of Averaging

Bagging combines bootstrapping with averaging of estimators. To understand
the potential benefits of averaging, we will consider the idealized situation in
which, instead of the bootstrap samples, we would have access to fresh data sets
T1, . . . , TB of size N that were independently sampled from the true probability
distribution P ∗. We apply the same training procedure to each data set Tb to
obtain an independent prediction function f̂b for each b = 1, . . . , B.

1. [2 pt] Consider regression with the squared loss. Let

f̂ =
1

B

B∑
b=1

f̂b

be the average of the estimators that were all trained on independent
samples. Use the bias-variance decomposition to show that

E
T

[EPE(f̂)] = E
X

[Var(Y |X)]+E
X

[(
f̄(X)−fBayes(X)

)2]
+

1

B
E

T,X

[(
f̂1(X)−f̄(X)

)2]
,

where f̄ = ET [f̂1] = · · · = ET [f̂B ] denotes the mean prediction function
when we average over the draw of a data set of size N . Since the right-
hand side is decreasing in B, the conclusion we can draw from this is that
averaging improves the expected prediction error of estimators that are
trained on independent samples.
Hint: For any independent random variables A1, . . . , AB and any con-
stants α1, . . . , αB, the variance satisfies

Var(α1A1 + . . .+ αBAB) = α2
1 Var(A1) + . . .+ α2

B Var(AB).
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2. [2 pt] Consider binary classification with 0/1-loss. Suppose that each f̂b
is a binary classifier with f̂b(x) ∈ {−1,+1}. Let

f̂(x) := sign
( B∑

b=1

f̂b(x)
)

be the majority vote. Now let fBayes be the Bayes-optimal classifier and
consider classification of a fixed data point x∗. Let

p := Pr
Tb

(f̂b(x
∗) = fBayes(x

∗))

be the probability that we sample a data set for which the trained classifier
f̂b classifies x∗ the same way as fBayes(x

∗). Now we want to study how

the majority vote f̂ behaves as B becomes large. Show that:

(a) If p > 1/2, then Pr(f̂(x∗) = fBayes(x
∗))→ 1 as B →∞.

(b) If p < 1/2, then Pr(f̂(x∗) = fBayes(x
∗))→ 0 as B →∞.

The conclusion is that averaging helps as long as f̂b is more likely to learn
the optimal prediction on x∗ than to learn the opposite prediction.

Hint 1: Note that sign
(∑B

b=1 f̂b(x
∗)
)
6= fBayes(x

∗) only if

n1 := |{b : f̂b(x
∗) = fBayes(x

∗)}| ≤ B/2.
Hint 2: You may use Hoeffding’s inequality, which states that, if Z1, . . . , ZB

are independent, identically distributed random variables with mean µ that
take values in [0, 1], then

Pr
(∣∣ B∑

b=1

Zb −Bµ
∣∣ ≥ ε) ≤ 2e−

2ε2

B .

Apply this with Zb = 1[f̂b(x
∗) = fBayes(x

∗)] and observe that µ = E[Zb] =

Pr(f̂b(x
∗) = fBayes(x

∗)) = p.
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