The Mathematics of Machine Learning Homework Set 6

Due 20 April 2023 before 13:00
via Canvas

You are allowed to work on this homework in pairs. One person per pair submits the answers via Canvas. Make sure to put both names on the submission.

1 The Benefits of Averaging

Bagging combines bootstrapping with averaging of estimators. To understand the potential benefits of averaging, we will consider the idealized situation in which, instead of the bootstrap samples, we would have access to fresh data sets T_{1}, \ldots, T_{B} of size N that were independently sampled from the true probability distribution P^{*}. We apply the same training procedure to each data set T_{b} to obtain an independent prediction function \hat{f}_{b} for each $b=1, \ldots, B$.

1. $[2 \mathrm{pt}]$ Consider regression with the squared loss. Let

$$
\hat{f}=\frac{1}{B} \sum_{b=1}^{B} \hat{f}_{b}
$$

be the average of the estimators that were all trained on independent samples. Use the bias-variance decomposition to show that

$$
\underset{T}{\mathbb{E}}[\operatorname{EPE}(\hat{f})]=\underset{X}{\mathbb{E}}[\operatorname{Var}(Y \mid X)]+\underset{X}{\mathbb{E}}\left[\left(\bar{f}(X)-f_{\text {Bayes }}(X)\right)^{2}\right]+\frac{1}{B} \underset{T, X}{\mathbb{E}}\left[\left(\hat{f}_{1}(X)-\bar{f}(X)\right)^{2}\right]
$$

where $\bar{f}=\mathbb{E}_{T}\left[\hat{f}_{1}\right]=\cdots=\mathbb{E}_{T}\left[\hat{f}_{B}\right]$ denotes the mean prediction function when we average over the draw of a data set of size N. Since the righthand side is decreasing in B, the conclusion we can draw from this is that averaging improves the expected prediction error of estimators that are trained on independent samples.
Hint: For any independent random variables A_{1}, \ldots, A_{B} and any constants $\alpha_{1}, \ldots, \alpha_{B}$, the variance satisfies

$$
\operatorname{Var}\left(\alpha_{1} A_{1}+\ldots+\alpha_{B} A_{B}\right)=\alpha_{1}^{2} \operatorname{Var}\left(A_{1}\right)+\ldots+\alpha_{B}^{2} \operatorname{Var}\left(A_{B}\right)
$$

2. [2 pt] Consider binary classification with $0 / 1$-loss. Suppose that each \hat{f}_{b} is a binary classifier with $\hat{f}_{b}(x) \in\{-1,+1\}$. Let

$$
\hat{f}(x):=\operatorname{sign}\left(\sum_{b=1}^{B} \hat{f}_{b}(x)\right)
$$

be the majority vote. Now let $f_{\text {Bayes }}$ be the Bayes-optimal classifier and consider classification of a fixed data point x^{*}. Let

$$
p:=\operatorname{Pr}_{T_{b}}\left(\hat{f}_{b}\left(x^{*}\right)=f_{\text {Bayes }}\left(x^{*}\right)\right)
$$

be the probability that we sample a data set for which the trained classifier \hat{f}_{b} classifies x^{*} the same way as $f_{\text {Bayes }}\left(x^{*}\right)$. Now we want to study how the majority vote \hat{f} behaves as B becomes large. Show that:
(a) If $p>1 / 2$, then $\operatorname{Pr}\left(\hat{f}\left(x^{*}\right)=f_{\text {Bayes }}\left(x^{*}\right)\right) \rightarrow 1$ as $B \rightarrow \infty$.
(b) If $p<1 / 2$, then $\operatorname{Pr}\left(\hat{f}\left(x^{*}\right)=f_{\text {Bayes }}\left(x^{*}\right)\right) \rightarrow 0$ as $B \rightarrow \infty$.

The conclusion is that averaging helps as long as \hat{f}_{b} is more likely to learn the optimal prediction on x^{*} than to learn the opposite prediction.
Hint 1: Note that $\operatorname{sign}\left(\sum_{b=1}^{B} \hat{f}_{b}\left(x^{*}\right)\right) \neq f_{\text {Bayes }}\left(x^{*}\right)$ only if $n_{1}:=\left|\left\{b: \hat{f}_{b}\left(x^{*}\right)=f_{\text {Bayes }}\left(x^{*}\right)\right\}\right| \leq B / 2$.
Hint 2: You may use Hoeffding's inequality, which states that, if Z_{1}, \ldots, Z_{B} are independent, identically distributed random variables with mean μ that take values in $[0,1]$, then

$$
\operatorname{Pr}\left(\left|\sum_{b=1}^{B} Z_{b}-B \mu\right| \geq \epsilon\right) \leq 2 e^{-\frac{2 \epsilon^{2}}{B}}
$$

Apply this with $Z_{b}=\mathbf{1}\left[\hat{f}_{b}\left(x^{*}\right)=f_{\text {Bayes }}\left(x^{*}\right)\right]$ and observe that $\mu=\mathbb{E}\left[Z_{b}\right]=$ $\operatorname{Pr}\left(\hat{f}_{b}\left(x^{*}\right)=f_{\text {Bayes }}\left(x^{*}\right)\right)=p$.

