The Mathematics of Machine Learning Homework Set 3

Due 9 March 2023 before 13:00
via Canvas

You are allowed to work on this homework in pairs. One person per pair submits the answers via Canvas. Make sure to put both names on the submission.

1 Theory Exercises

Let $\bar{x}=\frac{1}{N} \sum_{i=1}^{n} x_{i}$ be the mean of the feature vectors, and let $\bar{y}=\frac{1}{N} \sum_{i=1}^{n} y_{i}$ be the mean of the response vectors in the training data. Centering the features is a pre-processing procedure, which replaces all feature vectors x_{i} by

$$
x_{i} \mapsto x_{i}-\bar{x} .
$$

In the context of getting rid of the intercept, the 4 -th lecture claimed the following result:

Theorem 1. Let $\lambda \geq 0$. Then, for any regression estimator of the form

$$
\left(\hat{\beta}_{0}, \hat{\beta}\right)=\underset{\left(\beta_{0}, \beta\right)}{\arg \min } \sum_{i=1}^{N}\left(y_{i}-\beta_{0}-x_{i}^{\top} \beta\right)^{2}+\lambda \operatorname{pen}(\beta),
$$

centering the features only changes the intercept $\hat{\beta}_{0}$, but not $\hat{\beta}$. Moreover, after centering, the estimated intercept is always $\hat{\beta}_{0}=\bar{y}$.

1. This exercise is about proving Theorem 1.
(a) Prove the first part of the Theorem, that centering only changes $\hat{\beta}_{0}$. Hint 1: This part actually holds more generally, for a shift of the features $x_{i} \mapsto x_{i}-a$ by any constant vector a.
Hint 2: As an intermediate step, show that for any β_{0}, β there exists a β_{0}^{\prime} such that

$$
\begin{equation*}
\beta_{0}+x_{i}^{\top} \beta=\beta_{0}^{\prime}+\left(x_{i}-\bar{x}\right)^{\top} \beta \quad \text { for all } i=1, \ldots, N \tag{1}
\end{equation*}
$$

(b) Prove the second part of the Theorem, that, after centering, the estimated intercept is always \bar{y}.
Hint: optimize β_{0} for fixed β and interpret how the optimal value varies with β.

Another result, claimed in lecture 3, was about the bias-variance decomposition for regression. Let \hat{f} be any estimator, depending on the training data $T=$ $\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)$, and let $\bar{f}=\mathbb{E}_{T}[\hat{f}]$ be the average of the estimated functions, i.e. $\bar{f}(x)=\mathbb{E}_{T}[\hat{f}(x)]$ for all new inputs x, and let $f_{\mathrm{B}}=\arg \min _{f} \operatorname{EPE}(f)$ be the Bayes-optimal predictor, which we know equals $f_{\mathrm{B}}(x)=\mathbb{E}[Y \mid X=x]$.

Theorem 2. Consider regression with the squared loss. Then the expected prediction error for any estimator \hat{f} can be decomposed into the following three parts:

$$
\begin{array}{rlc}
\underset{T}{\mathbb{E}}[\operatorname{EPE}(\hat{f})]= & \underset{X}{\mathbb{E}}[\operatorname{Var}(Y \mid X)] & \text { (Bayes optimal } E P E \text {) } \\
& +\underset{X}{\mathbb{E}}\left[\left(\bar{f}(X)-f_{\mathrm{B}}(X)\right)^{2}\right] & \text { (bias squared) } \\
& +\underset{T, X}{\mathbb{E}}\left[(\hat{f}(X)-\bar{f}(X))^{2}\right] & \text { (variance). }
\end{array}
$$

2. Prove Theorem 2.

Hint: One way to prove the result is by repeated use of the following identity, which holds for any random variables A, B, C :

$$
\mathbb{E}\left[(A-B)^{2}\right]=\mathbb{E}\left[(A-C+C-B)^{2}\right]=\mathbb{E}\left[(A-C)^{2}\right]+2 \mathbb{E}[(A-C)(C-B)]+\mathbb{E}\left[(C-B)^{2}\right]
$$

