
The Mathematics of Machine Learning

Homework Set 3

Due 9 March 2023 before 13:00
via Canvas

You are allowed to work on this homework in pairs. One person per pair
submits the answers via Canvas. Make sure to put both names on the submis-
sion.

1 Theory Exercises

Let x̄ = 1
N

∑n
i=1 xi be the mean of the feature vectors, and let ȳ = 1

N

∑n
i=1 yi

be the mean of the response vectors in the training data. Centering the features
is a pre-processing procedure, which replaces all feature vectors xi by

xi 7→ xi − x̄.

In the context of getting rid of the intercept, the 4-th lecture claimed the fol-
lowing result:

Theorem 1. Let λ ≥ 0. Then, for any regression estimator of the form

(β̂0, β̂) = arg min
(β0,β)

N∑
i=1

(yi − β0 − x>i β)2 + λpen(β),

centering the features only changes the intercept β̂0, but not β̂. Moreover, after
centering, the estimated intercept is always β̂0 = ȳ.

1. This exercise is about proving Theorem 1.

(a) Prove the first part of the Theorem, that centering only changes β̂0.
Hint 1: This part actually holds more generally, for a shift of the
features xi 7→ xi − a by any constant vector a.
Hint 2: As an intermediate step, show that for any β0, β there exists
a β′

0 such that

β0 + x>i β = β′
0 + (xi − x̄)>β for all i = 1, . . . , N . (1)
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(b) Prove the second part of the Theorem, that, after centering, the
estimated intercept is always ȳ.
Hint: optimize β0 for fixed β and interpret how the optimal value
varies with β.

Another result, claimed in lecture 3, was about the bias-variance decomposition
for regression. Let f̂ be any estimator, depending on the training data T =
(x1, y1), . . . , (xN , yN ), and let f̄ = ET [f̂ ] be the average of the estimated func-

tions, i.e. f̄(x) = ET [f̂(x)] for all new inputs x, and let fB = arg minf EPE(f)
be the Bayes-optimal predictor, which we know equals fB(x) = E[Y | X = x].

Theorem 2. Consider regression with the squared loss. Then the expected
prediction error for any estimator f̂ can be decomposed into the following three
parts:

E
T

[EPE(f̂)] = E
X

[Var(Y |X)] (Bayes optimal EPE)

+ E
X

[(
f̄(X)− fB(X)

)2]
(bias squared)

+ E
T,X

[(
f̂(X)− f̄(X)

)2]
(variance).

2. Prove Theorem 2.
Hint: One way to prove the result is by repeated use of the following iden-
tity, which holds for any random variables A,B,C:

E[(A−B)2] = E[(A−C+C−B)2] = E[(A−C)2]+2E[(A−C)(C−B)]+E[(C−B)2].
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