The Mathematics of Machine Learning
Homework Set 3

Due 9 March 2023 before 13:00

via Canvas

You are allowed to work on this homework in pairs. One person per pair
submits the answers via Canvas. Make sure to put both names on the submis-
sion.

1 Theory Exercises

Let 2 = & > | x; be the mean of the feature vectors, and let § = & > | y;
be the mean of the response vectors in the training data. Centering the features
is a pre-processing procedure, which replaces all feature vectors x; by

T, — T —T.

In the context of getting rid of the intercept, the 4-th lecture claimed the fol-
lowing result:

Theorem 1. Let A > 0. Then, for any regression estimator of the form

N

centering the features only changes the intercept BO; but not . Moreover, after
centering, the estimated intercept is always By = y.

1. This exercise is about proving Theorem

(a) Prove the first part of the Theorem, that centering only changes Bo.
Hint 1: This part actually holds more generally, for a shift of the
features x; — x; — a by any constant vector a.

Hint 2: As an intermediate step, show that for any Py, B there exists
a B such that

Bot+alB=0,+(xi—2) B  foralli=1,....,N. (1)



(b) Prove the second part of the Theorem, that, after centering, the
estimated intercept is always ¥.
Hint: optimize By for fized B and interpret how the optimal value
varies with (.

Another result, claimed in lecture 3, was about the bias-variance decomposition
for regression. Let f be any estimator, depending on the training data T =
(x1,91),...,(xN,yn), and let f = ET[f} be the average of the estimated func-
tions, i.e. f(x) = Ep[f(z)] for all new inputs z, and let fp = arg min ; EPE(f)
be the Bayes-optimal predictor, which we know equals fg(z) = E[Y | X = z].

Theorem 2. Consider regression with the squared loss. Then the expected
prediction error for any estimator f can be decomposed into the following three
parts:

E[EPE( = E[Var(Y]X)] (Bayes optimal EPE)
+g [(f(X) - fB(X))Z] (bias squared)
+ TIE‘EX (f(X) - f(X))z] (variance).

2. Prove Theorem 2
Hint: One way to prove the result is by repeated use of the following iden-
tity, which holds for any random variables A, B, C':

E[(A-B)?] = E[(A~C+C—B)?] = E[(A-C)?|+2E[(A-C)(C—B)]+E[(C—B)?].
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