
The Mathematics of Machine Learning

Homework Set 1

Due 23 February 2023 before 13:00
via Canvas

You are allowed to work on this homework in pairs. One person per pair
submits the answers via Canvas. Make sure to put both names on the submis-
sion.

1 Theory Exercises

1. [4 pt]

(a) [2 pt] What is the Bayes-optimal predictor fB for binary classifica-
tion with Y ∈ {−1,+1} and the following cost-sensitive loss, which
considers a false negative worse than a false positive?

`(Y, Ŷ ) =


0 if Ŷ = Y ,

1 if Y = −1 and Ŷ = +1,

10 if Y = +1 and Ŷ = −1.

(b) [2 pt] For least-squares regression with the absolute error loss1,

`(Y, Ŷ ) = |Y − Ŷ |,

the Bayes optimal predictor is such that fB(X) is any median of Y
under P ∗(Y |X). This follows from the following lemma:

Lemma 1. For any random variable Y with distribution P ,

E[|Y − c|]

is minimized in c by any median of P .

Prove this lemma. You may use without proof that at least one
median m always exists.
Hint 1: The median of any distribution P is any point m such that

P (Y ≤ m) ≥ 1

2
and P (Y ≥ m) ≥ 1

2
.

1NB This is a common alternative to the squared error loss `(Y, Ŷ ) = (Y − Ŷ )2 that we
considered in the lecture. The absolute error is less sensitive to large errors, which may be an
advantage if there may be outliers (extreme points with small probability).
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Hint 2: By symmetry, it is sufficient to show that if c < m and m
is a median of P , then

E[|Y − c|] ≥ E[|Y −m|].

(You do not have to prove this.)
Hint 3: Let 1{A} be the indicator for any event A, which is 1 if A
holds and 0 otherwise. Show that, if c < m, then

E[|Y − c|]− E[|Y −m|] = E[(c−m)1{Y ≤ c}]
+ E[(2Y −m− c)1{c < Y < m}]
+ E[(m− c)1{Y ≥ m}],

and find a simpler lower bound on this expression using that Y ≥ c
in the middle case.
Hint 4: Use the properties of the median to show that the lower bound
from Hint 3 is non-negative.

2 Programming Exercise

The following programming exercise is to be implemented in Python, using a
Jupyter notebook. As a starting point, you may use the notebook Homework1-start.ipynb,
which is available from the course website.

2. [8 pt]

(a) Simulate a training set of size N = 200 and a test set of size 10 000
by sampling from the following binary classification distribution with
X ∈ R2 and Y ∈ {−1,+1}:

i. Sample a Bernoulli random variable Z ∈ {−1,+1} such that
Pr(Z = 1) = 3/4. The interpretation is that Z represents the
unobserved true class.

ii. Set µZ =

(
+Z
−Z

)
and sample X from a normal distribution

N (µZ , I).

iii. Sample Y such that Pr(Y = Z) = 4/5, so we only observe a
noisy label that might differ from Z.

(b) Plot the training set in 2 dimensions, using different symbols or colors
for the two classes.

(c) Similar to Figure 2.4 in the book, plot the error = average 0/1-
loss both on the training set and on the test set for the K-nearest
neighbour classifier as a function of K = N, . . . , 1.

(d) Derive a way to compute the Bayes-optimal classifier fB for the 0/1-
loss, and add its errors on the training set and on the test set as
horizontal lines to the plot.
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Hint to calculate fB: Let g(x, y, z) = Pr(Z = z) Pr(Y = y|Z =
z)φ(x;µz, I) denote the joint density of X,Y and Z, where φ(x;µ,Σ)
is the density of a multivariate Gaussian with mean µ and covariance
matrix Σ. We need to determine whether Pr(Y = +1|X) ≥ Pr(Y =
−1|X), which is equivalent to∑

z∈{−1,+1}

g(x,+1, z) ≥
∑

z∈{−1,+1}

g(x,−1, z).
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