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Games!

Lots of interest, old and new, in solving convex-concave min-max
problems

min
p∈P

max
q∈Q

f(p, q)

• Economics
• Optimization
• Machine learning (GANs)
• Online learning and Bandits (Track-and-Stop)
• …
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What is a solution?

Given ϵ ≥ 0, we aim to find an approximate saddle point / Nash
equilibrium

(p⋆, q⋆) ∈ P ×Q,

satisfying

max
q∈Q

f(p⋆, q)−min
p∈P

f(p, q⋆) ≤ 2ϵ
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How are we going to find that solution

We consider the first-order query model.

We start with an unknown f from a known class F .
Interaction protocol
In rounds 1, 2, . . . ,T

• Learner issues query (pt, qt)

• Learner receives feedback (∇pt f(pt, qt),∇qt f(pt, qt))

The learner outputs an ϵ-optimal saddle point (p⋆, q⋆).

Query complexity
How many first-order queries T(ϵ) are necessary and sufficient for a
sequential learner to output an ϵ-approximate saddle point for any
f ∈ F?
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The most classical instance

Consider special case of zero-sum matrix games (bilinear functions
over probability simplex):

min
p∈△K

max
q∈△K

p⊺Mq (M ∈ [−1,+1]K×K)

P = Q = △K, F =
{

f(p, q) = p⊺Mq
∣∣∣ M ∈ [−1,+1]K×K

}
(∇pf(p, q),∇qf(p, q)) = (Mq,M⊺p)

Algorithms since Brown (1951), up to Rakhlin and Sridharan (2013).

Lower bounds remain elusive.

⇒ Optimal query complexity unknown.
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Where we are heading today
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What is known: Upper Bounds

1951: First iterative methods by Brown (1951) and Robinson (1951).
1999: Freund and Schapire (1999) discovered the relation to Regret

Bounds: Can compute an ϵ-Nash-equilibrium with T iterations,
where

T = O
(
logK
ϵ2

)
2011: Daskalakis, Deckelbaum, and Kim (2011) can compute an

ϵ-Nash-equilibrium with T iterations, where

T = O
(

g(K)
ϵ

)
2013: Rakhlin and Sridharan (2013) can compute an ϵ-Nash-equilibrium

with T iterations, where

T = O
(
logK
ϵ

)
8 / 26



What is known: Lower Bounds

Assumptions on f and domains that exclude our setting:

2018: Ouyang and Xu (2021) show a lower bound on the query complexity
for saddle-point problems with curvature and rotationally
invariant constraint sets.

Harder query models:

2015: Fearnley et al. (2015) show lower bound when queries (i, j) return
single matrix entry Mij.

• Technique: construct hard binary matrix M ∈ {0, 1}K×K

2016: Hazan and Koren (2016) show lower bound when queries (p, q)
return best responses i∗ ∈ argmin

i
(Mq)i, j∗ ∈ argmax

j
(M⊺p)j.

• Technique: Reduction from submodular optimization over the
hypercube by encoding it as a binary matrix M ∈ {0, 1}K×K

Nothing for our setting!
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Discrete entries are too easy!

Theorem (Identifying a Discrete Matrix)
One query suffices to fully identify M if the entries Mij come from a
known countable alphabet.

• E.g. Mij ∈ {−1,+1}
• Implies query complexity is T(ϵ) ≤ 1 if we restrict to discrete M!

Rules out all existing lower bound techniques. For instance:

• Hard binary matrix (Fearnley et al., 2015)
• Encoding submodular optimization as binary matrix (Hazan and

Koren, 2016)
• Randomly generating a matrix with binary entries (Orabona and Pál,

2018)
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Proof Idea: One Query Suffices

Suppose Mij ∈ {0, . . . , n − 1} for some n ≥ 1.

Consider query (p, q) with p arbitrary and qj ∝ n−j. Then the ith entry of
the feedback (to the p player) is

∇pf(p, q)i =
K∑

j=1
Mijqj ∝

K∑
j=1

Mijn−j

This is the ith row of M written in base n.

We recover the entire matrix in one query.

But query is very artificial and fails under numerical imprecision. Should
we restrict the query model to only allow more realistic queries? No!
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Continuous Matrices are Hard

Theorem (Identifying a Continuous Matrix)
If the entries in M can take any values in [−1,+1], then the number of
queries required to fully identify M is exactly K.

• As hard as querying each row/column in turn
• Compare to: 1 query if M is discrete
• Proof approach: carefully count the number of linear constraints

imposed by the queries.

Theorem (Query Complexity for Exact Equilibria)
The number of queries required to compute an exact Nash equilibrium
is at least T(0) ≥ K

2 − 1.

• Essentially as hard as identifying the full matrix!
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Proof Ingredients and Main Ideas

Idea: construct adversary answering queries by the learner so as to delay
revealing the equilibrium for as long as possible.

1. Based on the feedback given so far, a subset of consistent matrices
remains: every round adds ≤ 2K equality constraints.

2. Restrict a priori to nice subset B0 of matrices M for which the Nash
equilibrium (p⋆, q⋆) are fully mixed, i.e. have full support. Then
they are equalizer strategies:

Mq⋆ = M⊺p⋆ ∝ 1.

3. Lemma: the learner knows an exact equilibrium only if the span of
the feedback includes 1.

4. Our adversary keeps 1 out of the span of the feedback for K
2 − 1

rounds. ⇐ “dimension-as-a-resource”
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1. Consistent Matrices

Consider t rounds with queries

(ps, qs)s≤t

and feedback
(ℓ(p)s , ℓ(q)s )s≤t

Consistent matrices are

Et =
{

M ∈ B0

∣∣∣M⊺ps = ℓ(q)s and Mqs = ℓ(p)s for all s ≤ t
}

16 / 26



2. Subset B0 of Nice Matrices

Before we start, we commit that M will be in

B0 = B∥·∥1,∞

(
IK
2 ,

1
16K2

)
=

{
M ∈ [±1]K×K s.t.

∣∣∣∣Mij −
δi=j
2

∣∣∣∣ ≤ 1
16K2

}
.

Any M ∈ B0 satisfies:

• All equilibria of M are fully mixed
• Non-zero value minp maxq p⊺Mq > 0.
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3. Known Equilibrium Lemma
Lemma
Let (p⋆, q⋆) be a common Nash equilibrium for all M ∈ Et ̸= ∅. Then
p⋆ ∈ Span(p1:t) and q⋆ ∈ Span(q1:t).

The learner knows an exact equilibrium
only if the span of the feedback includes 1:

Corollary

Under same assumption, 1 ∈ Span(ℓ
(p)
1:t ) ∩ Span(ℓ

(q)
1:t ).

Proof.
(p⋆, q⋆) fully mixed because Et ⊂ B0. Hence exists v > 0 such that

• 1 = vM⊺p⋆ ∈ M⊺ Span(p1:t) = Span(ℓ
(q)
1:t )

• 1 = vMq⋆ ∈ M Span(q1:t) = Span(ℓ
(p)
1:t )
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4. Keeping 1 from the span of the feedback
Theorem

For T ≤ K/2 − 1 rounds we can maintain Mt ∈ Et s.t. 1 ̸∈ Span(ℓ
(q)
1:T).

By induction on t.
For the base case, we pick M0 = IK/2 ∈ E0.

Upon query pt+1 with fresh part p̄t+1 = pt+1 − ProjSpan(p1:t)(pt+1), set

Mt+1 = Mt +
p̄t+1

∥p̄t+1∥2 u⊺
t

where we pick non-zero ut orthogonal to 1, as well as to

• Span(q1:t) (consistent with past feedback ℓ
(p)
t )

• Span(ℓ
(q)
1:t ) (proof artifact)

• M⊺
t pt+1 (the threat)

The new feedback is ℓ
(q)
t+1 = M⊺

t+1pt+1 = M⊺
t pt+1 + ut. If

1 =
∑t

s=1 αsℓ
(q)
s + αt+1ℓ

(q)
t+1, then 0 = 1⊺ut = αt+1∥ut∥, so αt+1 = 0.
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Result

We can keep going until all dimensions are exhausted and we cannot
pick ut orthogonal to Span(q1:t, ℓ

(q)
1:t ,1,M

⊺
t+1pt) of 2t + 2 vectors. We

obtain
Theorem (Query Complexity for Exact Equilibria)
The number of queries required to compute an exact (ϵ = 0) Nash
equilibrium is at least T(0) ≥ K

2 − 1.

20 / 26



Outline

Background and Related Work

Identifying a Discrete Matrix is Too Easy

Continuous Matrices are Hard for Exact Nash Equilibria

Extension to Approximate Nash Equilibria

21 / 26



Approximate Nash Equilibria

The same approach extends from ϵ = 0 to small ϵ > 0:

Theorem (Approximate Nash Equilibria)
The number of queries required to compute a Nash equilibrium for any
ϵ ≤ 1/(e 210K4) is at least

T(ϵ) ≥
( − log(210K4ϵ)

log(211/2K5/2) + log(− log(210K4ϵ))
− 1

)
∧
(K

2 − 1
)

= Ω̃
(
log

1
Kϵ

)

Proof approach: Need to keep

dist
(
1, Span(ℓ

(q)
1:t )

)
large enough, instead of only non-zero.
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Very satisfying:

• Prior lower bound techniques cannot work, because discrete
matrices are too easy: 1 query suffices to identify M

• Identifying continuous M is hard: requires K queries
• Computing exact Nash equilibrium is hard: T(0) ≥ K

2 − 1

Far from solved:

• For tiny ϵ, we have a first non-trivial lower bound on the query
complexity T(ϵ), but it is far from the upper bounds 23 / 26
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