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Abstract

Bayesian model averaging, model selection and their approximations such as BIC
are generally statistically consistent, but sometimes achieve slower rates of con-
vergence than other methods such as AIC and leave-one-out cross-validation. On
the other hand, these other methods can be inconsistent. We identify thecatch-up
phenomenonas a novel explanation for the slow convergence of Bayesian meth-
ods. Based on this analysis we define the switch-distribution, a modification of the
Bayesian model averaging distribution. We prove that in many situations model
selection and prediction based on the switch-distributionis both consistent and
achieves optimal convergence rates, thereby resolving theAIC-BIC dilemma. The
method is practical; we give an efficient algorithm.

1 Introduction

We consider inference based on a countable set of models (sets of probability distributions), focusing
on two tasks: model selection and model averaging. In model selection tasks, the goal is to select
the model that best explains the given data. In model averaging, the goal is to find the weighted
combination of models that leads to the best prediction of future data from the same source.

An attractive property of some criteria for model selectionis that they are consistent under weak
conditions, i.e. if the true distributionP ∗ is in one of the models, then theP ∗-probability that this
model is selected goes to one as the sample size increases. BIC [14], Bayes factor model selection
[8], Minimum Description Length (MDL) model selection [3] and prequential model validation [5]
are examples of widely used model selection criteria that are usually consistent. However, other
model selection criteria such as AIC [1] and leave-one-out cross-validation (LOO) [16], while of-
ten inconsistent, do typically yield better predictions. This is especially the case in nonparametric
settings, whereP ∗ can be arbitrarily well-approximated by a sequence of distributions in the (para-
metric) models under consideration, but is not itself contained in any of these. In many such cases,
the predictive distribution converges to the true distribution at the optimal rate for AIC and LOO
[15, 9], whereas in general BIC, the Bayes factor method and prequential validation only achieve
the optimal rate to within anO(log n) factor [13, 20, 6]. In this paper we reconcile these seemingly
conflicting approaches [19] by improving the rate of convergence achieved in Bayesian model se-
lection without losing its convergence properties. First we provide an example to show why Bayes
sometimes converges too slowly.

Given priors on modelsM1,M2, . . . and parameters therein, Bayesian inference associates each
modelMk with the marginal distributionpk, given in (1), obtained by averaging over the parameters
according to the prior. In model selection the preferred model is the one with maximum a posteriori
probability. By Bayes’ rule this isarg maxk pk(xn)w(k), wherew(k) denotes the prior probability
of Mk. We can further average over model indices, a process calledBayesian Model Averaging
(BMA). The resulting distributionpbma(x

n) =
∑

k pk(xn)w(k) can be used for prediction. In a se-
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quential setting, the probability of a data sequencexn := x1, . . . , xn under a distributionp typically
decreases exponentially fast inn. It is therefore common to consider− log p(xn), which we call the
codelengthof xn achieved byp. We take all logarithms to base2, allowing us to measure codelength
in bits. The name codelength refers to the correspondence between codelength functions and prob-
ability distributions based on the Kraft inequality, but one may also think of the codelength as the
accumulated log loss that is incurred if we sequentially predict thexi by conditioning on the past,
i.e. usingp(·|xi−1) [3, 6, 5, 11]. For BMA, we have− log pbma(x

n) =
∑n

i=1− log pbma(xi|x
i−1).

Here theith term represents the loss incurred when predictingxi given xi−1 usingpbma(·|x
i−1),

which turns out to be equal to the posterior average:pbma(xi|x
i−1) =

∑

k pk(xi|x
i−1)w(k|xi−1).

Prediction usingpbma has the advantage that the codelength it achieves onxn is close to the code-
length ofp

k̂
, wherek̂ is the index of best of the marginalsp1, p2, . . . Namely, given a priorw on

model indices, the difference between− log pbma(x
n) = − log(

∑

k pk(xn)w(k)) and− log p
k̂
(xn)

must be in the range[0,− log w(k̂)], whatever dataxn are observed. Thus, using BMA for pre-
diction is sensible if we are satisfied with doing essentially as well as the best model under con-
sideration. However, it is often possible to combinep1, p2, . . . into a distribution that achieves
smaller codelength thanp

k̂
! This is possible if the index̂k of the best distributionchanges with

the sample size in a predictable way. This is common in model selection, for example with nested
models, sayM1 ⊂ M2. In this casep1 typically predicts better at small sample sizes (roughly,
becauseM2 has more parameters that need to be learned thanM1), while p2 predicts better
eventually. Figure 1 illustrates this phenomenon. It showsthe accumulated codelength difference
− log p2(x

n) − (− log p1(x
n)) on “The Picture of Dorian Gray” by Oscar Wilde, wherep1 andp2

are the Bayesian marginal distributions for the first-orderand second-order Markov chains, respec-
tively, and each character in the book is an outcome. Note that the example modelsM1 andM2 are
very crude; for this particular application much better models are available. In more complicated,
more realistic model selection scenarios, the models may still be wrong, but it may not be known
how to improve them. ThusM1 andM2 serve as a simple illustration only. We used uniform priors
on the model parameters, but for other common priors similarbehaviour can be expected. Clearly
p1 is better for about the first100 000 outcomes, gaining a head start of approximately40 000 bits.
Ideally we should predict the initial100 000 outcomes usingp1 and the rest usingp2. However,pbma
only starts to behave likep2 when itcatches upwith p1 at a sample size of about310 000, when the
codelength ofp2 drops below that ofp1. Thus, in the shaded areapbma behaves likep1 while p2 is
making better predictions of those outcomes: since atn = 100 000, p2 is 40 000 bits behind, and at
n = 310 000, it has caught up, in between it must have outperformedp1 by 40 000 bits!

The general pattern that first one model is
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Figure 1: The Catch-up Phenomenon

better and then another occurs widely, both
on real-world data and in theoretical set-
tings. We argue that failure to take this
effect into account leads to the suboptimal
rate of convergence achieved by Bayes fac-
tor model selection and related methods.
We have developed an alternative method
to combine distributionsp1 andp2 into a
single distributionpsw, which we call the
switch-distribution, defined in Section 2.
Figure 1 shows thatpsw behaves likep1

initially, but in contrast topbma it starts
to mimic p2 almost immediatelyafter p2

starts making better predictions; it essen-
tially does thisno matter what sequencexn is actually observed. psw differs from pbma in that it
is based on a prior distribution onsequences of modelsrather than simply a prior distribution on
models. This allows us to avoid the implicit assumption thatthere is one model which is best at
all sample sizes. After conditioning on past observations,the posterior we obtain gives a better
indication of which model performs bestat the current sample size, thereby achieving a faster rate
of convergence. Indeed, the switch-distribution is related to earlier algorithms fortracking the best
expertdeveloped in the universal prediction literature [7, 18, 17, 10]; however, the applications we
have in mind and the theorems we prove are completely different. In Sections 3 and 4 we show
that model selection based on the switch-distribution is consistent (Theorem 1), but unlike standard
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Bayes factor model selection achieves optimal rates of convergence (Theorem 2). Proofs of the
theorems are in Appendix A. In Section 5 we give a practical algorithm that computes the switch-
distribution forK (rather than2) predictors inΘ(n ·K) time. In the full paper, we will give further
details of the proof of Theorem 1 and a more detailed discussion of Theorem 2 and the implications
of both theorems.

2 The Switch-Distribution for Model Selection and Prediction

Preliminaries SupposeX∞ = (X1, X2, . . .) is a sequence of random variables that take values
in sample spaceX ⊆ R

d for somed ∈ Z
+ = {1, 2, . . .}. Forn ∈ N = {0, 1, 2, . . .}, let xn = (x1,

. . ., xn) denote the firstn outcomes ofX∞, such thatxn takes values in the product spaceXn =
X1 × · · · × Xn. (We letx0 denote the empty sequence.) LetX ∗ =

⋃∞
n=0 X

n. Form > n, we write
Xm

n+1 for (Xn+1, . . ., Xm), wherem =∞ is allowed and we omit the subscript whenn = 0.

Any distribution P (X∞) may be defined by a sequentialprediction strategyp that predicts the
next outcome at any timen ∈ N. To be precise: Given the previous outcomesxn at timen, this
prediction strategy should issue a conditional densityp(Xn+1|x

n) with corresponding distribution
P (Xn+1|x

n) for the next outcomeXn+1. Such sequential prediction strategies are sometimes called
prequential forecasting systems[5]. An instance is given in Example 1 below. We assume that the
densityp(Xn+1|x

n) is taken relative to either the usual Lebesgue measure (ifX is continuous)
or the counting measure (ifX is countable). In the latter casep(Xn+1|x

n) is a probability mass
function. It is natural to define the joint densityp(xm|xn) = p(xn+1|x

n) · · · p(xm|x
m−1) and let

P (X∞
n+1|x

n) be the unique distribution such that, for allm > n, p(Xm
n+1|x

n) is the density of its
marginal distribution forXm

n+1. To ensure thatP (X∞
n+1|x

n) is well-defined even ifX is continuous,
we impose the natural requirement that for anyk ∈ Z

+ and any fixed eventAk+1 ⊆ Xk+1 the
probabilityP (Ak+1|x

k) is a measurable function ofxk, which holds automatically ifX is countable.

Model Selection and Prediction The goal inmodel selectionis to choose an explanation for
observed dataxn from a potentially infinite list of candidate modelsM1, M2, . . . We consider
parametric models, which are sets{pθ : θ ∈ Θ} of prediction strategiespθ that are indexed by ele-
ments ofΘ ⊆ R

d, for some smallest possibled ∈ N, the number of degrees of freedom. Examples
of model selection are regression based on a set of basis functions such as polynomials (d is the
number of coefficients of the polynomial), the variable selection problem in regression [15, 9, 20]
(d is the number of variables), and histogram density estimation [13] (d is the number of bins). A
model selection criterionis a functionδ : X ∗ → Z

+ that, given any data sequencexn ∈ X ∗, selects
the modelMk with indexk = δ(xn).

We associate each modelMk with a single prediction strategȳpk. The bar emphasizes thatp̄k is a
meta-strategy based on the prediction strategies inMk. In many approaches to model selection, for
example AIC and LOO,̄pk is defined using some estimatorθ̂k for each modelMk, which maps a
sequencexn of previous observations to an estimated parameter value that represents a “best guess”
of the true/best distribution in the model. Prediction is then based on this estimator:̄pk(Xn+1 |
xn) = p

θ̂k(xn)(Xn+1 | x
n), which also defines a joint densitȳpk(xn) = p̄k(x1) · · · p̄k(xn|x

n−1).
The Bayesian approach to model selection or model averaginggoes the other way around. We start
out with a priorw onΘk, and define the Bayesian marginal density

p̄k(xn) =

∫

θ∈Θk

pθ(x
n)w(θ) dθ. (1)

Whenp̄k(xn) is non-zero this joint density induces a unique conditionaldensityp̄k(Xn+1 | x
n) =

p̄k(Xn+1, x
n)/p̄k(xn), which is equal to the mixture ofpθ ∈ Mk according to the posterior,

w(θ|xn) = pθ(x
n)w(θ)/

∫

pθ(x
n)w(θ) dθ, based onxn. Thus the Bayesian approach also de-

fines a prediction strategȳpk(Xn+1|x
n), whose corresponding distribution may be thought of as

an estimator. From now on we sometimes call the distributions induced bȳp1, p̄2, . . . “estimators”,
even if they are Bayesian. This unified view is known asprequentialor predictive MDL[11, 5].
Example 1. SupposeX = {0, 1}. Then a prediction strategȳp may be based on the Bernoulli
modelM = {pθ | θ ∈ [0, 1]} that regardsX∞ as a sequence of independent, identically distributed
Bernoulli random variables withPθ(Xn+1 = 1) = θ. We may predictXn+1 using the maximum
likelihood (ML) estimator based on the past, i.e. usingθ̂(xn) = n−1

∑n
i=1 xi. The prediction for

x1 is then undefined. If we use a smoothed ML estimator such as theLaplace estimator,̂θ′(xn) =
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(n + 2)−1(
∑n

i=1 xi + 1), then all predictions are well-defined. Perhaps surprisingly, the predictor
p̄′ defined byp̄′(Xn+1 | x

n) = p
θ̂′(xn)(Xn+1) equals the Bayesian predictive distribution based on

a uniform prior. Thus in this case a Bayesian predictor and anestimation-based predictor coincide!

The Switch-Distribution Supposep1, p2, . . . is a list of prediction strategies forX∞. (Although
here the list is infinitely long, the developments below can with little modification be adjusted to the
case where the list is finite.) We first define a familyQ = {qs : s ∈ S} of combinator prediction
strategies that switch between the original prediction strategies. Here the parameter spaceS is
defined as

S = {(t1, k1), . . . , (tm, km) ∈ (N× Z
+)m | m ∈ Z

+, 0 = t1 < . . . < tm}. (2)

The parameters ∈ S specifies the identities ofm constituent prediction strategies and the sample
sizes, calledswitch-points, at which to switch between them. Fors = ((t′1, k

′
1), . . . , (t

′
m′ , k′

m′)), we
defineti(s) = t′i, ki(s) = k′

i andm(s) = m′. We omit the argument when the parameters is clear
from context, e.g. we writet3 for t3(s). For eachs ∈ S the correspondingqs ∈ Q is defined as:

qs(Xn+1|x
n) =































pk1
(Xn+1|x

n) if n < t2,
pk2

(Xn+1|x
n) if t2 ≤ n < t3,

...
...

pkm−1
(Xn+1|x

n) if tm−1 ≤ n < tm,
pkm

(Xn+1|x
n) if tm ≤ n.

(3)

Switching to the same predictor multiple times is allowed. The extra switch-pointt1 is included
to simplify notation; we always taket1 = 0. Now the switch-distribution is defined as a Bayesian
mixture of the elements ofQ according to a priorπ onS:

Definition 1 (Switch-Distribution). Let π be a probability mass function onS. Then the switch-
distributionPsw with prior π is the distribution forX∞ such that, for anyn ∈ Z

+, the density of its
marginal distribution forXn is given by

psw(xn) =
∑

s∈S

qs(x
n) · π(s). (4)

Although the switch-distribution provides a general way tocombine prediction strategies, in this
paper it will only be applied to combine prediction strategiesp̄1, p̄2, . . . that correspond to models.
In this case we may define a corresponding model selection criterion δsw. To this end, letKn+1 :
S → Z

+ be a random variable that denotes the strategy/model that isused to predictXn+1 given
past observationsxn. Formally, Kn+1(s) = ki(s) iff ti(s) ≤ n and i = m(s) ∨ n < ti+1(s).
Algorithm 1, given in Section 5, efficiently computes the posterior distribution onKn+1 givenxn:

π(Kn+1 = k | xn) =

∑

{s:Kn+1(s)=k} π
(

s

)

qs(x
n)

psw(xn)
, (5)

which is defined wheneverpsw(xn) is non-zero. We turn this into a model selection criterion
δsw(xn) = arg maxk π(Kn+1 = k|xn) that selects the model with maximum posterior probability.

3 Consistency

If one of the models, say with indexk∗, is actually true, then it is natural to ask whetherδsw is
consistent, in the sense that it asymptotically selectsk∗ with probability1. Theorem 1 below states
that this is the case under certain conditions which are onlyslightly stronger than those required for
the consistency of standard Bayes factor model selection.

Bayes factor model selection is consistent if for allk, k′ 6= k, P̄k(X∞) andP̄k′(X∞) are mutually
singular, that is, if there exists a measurable setA ⊆ X∞ such thatP̄k(A) = 1 andP̄k′(A) = 0 [3].
For example, this can usually be shown to hold if the models are nested and for eachk, Θk is a subset
of Θk+1 of wk+1-measure0 [6]. For consistency ofδsw, we need to strengthen this to the requirement
that, for allk′ 6= k and allxn ∈ X ∗, the distributionsP̄k(X∞

n+1 | xn) and P̄k′(X∞
n+1 | xn) are

mutually singular. For example, ifX1,X2, . . . are i.i.d. according to eachPθ in all models, but also
if X is countable and̄pk(xn+1 | xn) > 0 for all k, all xn+1 ∈ Xn+1, then this conditional mutual
singularity is automatically implied by ordinary mutual singularity ofP̄k(X∞) andP̄k′(X∞).
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Let Es = {s′ ∈ S | m(s′) > m(s), (ti(s
′), ki(s

′)) = (ti(s), ki(s)) for i = 1, . . . ,m(s)} denote
the set of all possible extensions ofs to more switch-points. Let̄p1, p̄2, . . . be Bayesian prediction
strategies with respective parameter spacesΘ1, Θ2, . . . and priorsw1, w2, . . ., and letπ be the prior
of the corresponding switch-distribution.
Theorem 1 (Consistency of the Switch-Distribution). Supposeπ is positive everywhere on{s ∈
S | m(s) = 1} and is such that there exists a positive constantc such that, for everys ∈ S,
c · π(s) ≥ π(Es). Suppose further that̄Pk(X∞

n+1 | x
n) andP̄k′(X∞

n+1 | x
n) are mutually singular

for all k, k′ ∈ Z
+, k 6= k′, xn ∈ X ∗. Then, for allk∗ ∈ Z

+, for all θ∗ ∈ Θk∗ except for a subset of
Θk∗ of wk∗ -measure0, the posterior distribution onKn+1 satisfies

π(Kn+1 = k∗ | Xn)
n→∞
−→ 1 with Pθ∗-probability1. (6)

The requirement thatc · π(s) ≥ π(Es) is automatically satisfied ifπ is of the form:

π(s) = πM(m)πK(k1)

m
∏

i=2

πT(ti|ti > ti−1)πK(ki), (7)

whereπM , πK andπT are priors onZ+ with full support, andπM is geometric:πM(m) = θm−1(1−θ)
for some0 ≤ θ < 1. In this casec = θ/(1− θ).

4 Optimal Risk Convergence Rates

SupposeX1,X2, . . . are distributed according toP ∗. We define therisk at sample sizen ≥ 1 of the
estimatorP̄ relative toP ∗ as

Rn(P ∗, P̄ ) = EXn−1∼P∗ [D(P ∗(Xn = · | Xn−1)‖P̄ (Xn = · | Xn−1))],

whereD(·‖·) is the Kullback-Leibler (KL) divergence [4]. This is the standard definition of risk
relative to KL divergence. The risk is always well-defined, and equal to0 if P̄ (Xn+1 | Xn) is
equal toP ∗(Xn+1 | Xn). The following identity connects information-theoretic redundancy and
accumulated statistical risk (see [4] or [6, Chapter 15]): If P ∗ admits a densityp∗, then for all
prediction strategies̄p,

EXn∼P∗ [− log p̄(Xn) + log p∗(Xn)] =
n

∑

i=1

Ri(P
∗, P̄ ). (8)

For a union of parametric modelsM =
⋃

k≥1Mk, we define theinformation closure〈M〉 =

{P ∗ | infP∈M D(P ∗‖P ) = 0}, i.e. the set of distributions forX∞ that can be arbitrarily well
approximated by elements ofM. Theorem 2 below shows that, for a very large class ofP ∗ ∈ 〈M〉,
the switch-distribution defined relative to estimatorsP̄1, P̄2, . . . achieves the same risk as any other
model selection criterion defined with respect to the same estimators, up to lower order terms; in
other words, model averaging based on the switch-distribution achieves at least the same rate of
convergence as model selection based on any model selectioncriterion whatsoever (the issue of
averaging vs selection will be discussed at length in the full paper). The theorem requires that the
prior π in (4) is of the form (7), and satisfies

− log πM(m) = O(m) ; − log πK(k) = O(log k) ; − log πT(t) = O(log t). (9)

Thus,πM , the prior on the total number of switch points, is allowed todecrease either polynomially
or exponentially (as required for Theorem 1);πT andπK must decrease polynomially. For example,
we could setπT(t) = πK(t) = 1/(t(t+1)), or we could take the universal prior on the integers [12].

LetM∗ ⊂ 〈M〉 be some subset of interest of the information closure of modelM.M∗ may consist
of just a single, arbitrary distributionP ∗ in 〈M〉\M – in that case Theorem 2 shows that the switch-
distribution converges as fast as any other model selectioncriterion on any distribution in〈M〉 that
cannot be expressed parametrically relative toM – or it may be a large, nonparametric family. In
that case, Theorem 2 shows that the switch-distribution achieves the minimax convergence rate. For
example, if the modelsMk are k-bin histograms [13], then〈M〉 contains every distribution on
[0, 1] with bounded continuous densities, and we may, for example,takeM∗ to be the set of all
distributions on[0, 1] which have a differentiable densityp∗ such thatp∗(x) and(d/dx)p∗(x) are
bounded from below and above by some positive constants.

We restrict ourselves to model selection criteria which, atsample sizen, never select a modelMk

with k > nτ for some arbitrarily large but fixedτ > 0; note that this condition will be met for most
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practical model selection criteria. Leth : Z
+ → R

+ denote the minimax optimal achievable risk as
a function of the sample size, i.e.

h(n) = inf
δ:Xn→{1,2,...,⌈nτ⌉}

sup
P∗∈M∗

sup
n′≥n

Rn′(P ∗, P̄δ), (10)

where the infimum is over all model selection criteria restricted to sample sizen, and⌈·⌉ denotes
rounding up to the nearest integer.̄pδ is the prediction strategy satisfying, for alln′ ≥ n, all
xn′

∈ Xn′

, p̄δ(Xn′+1 | x
n′

) := p̄δ(xn)(Xn′+1 | x
n′

), i.e. at sample sizen it predictsxn+1 using
p̄k for the k = δ(Xn) chosen byδ, and it keeps predicting futurexn′+1 by thisk. We callh(n)
the minimax optimal rate of convergence for model selectionrelative to data fromM∗, model list
M1,M2, . . ., and estimators̄P1, P̄2, . . . The definition is slightly nonstandard, in that we require a
second supremum overn′ ≥ n. This is needed because, as will be discussed in the full paper, it can
sometimes happen that, for someP ∗, somek, somen′ > n, Rn′(P ∗, P̄k) > Rn(P ∗, P̄k) (see also
[4, Section 7.1]). In cases where this cannot happen, such asregression with standard ML estimators,
and in cases where, uniformly for allk, supn′≥n Rn′(P ∗, P̄k)−Rn(P ∗, P̄k) = o(

∑n
i=1 h(i)) (in the

full paper we show that this holds for, for example, histogram density estimation), our Theorem 2
also implies minimax convergence in terms of the standard definition, without thesupn′≥n. We
expect that thesupn′≥n can be safely ignored for most “reasonable” models and estimators.
Theorem 2. DefinePsw for some model classM = ∪k≥1Mk as in (4), where the priorπ sat-
isfies (9). LetM∗ be a subset of〈M〉 with minimax rateh such thatnh(n) is increasing, and
nh(n)/(log n)2 →∞. Then

lim sup
n→∞

supP∗∈M∗

∑n
i=1 Ri(P

∗, Psw)
∑n

i=1 h(i)
≤ 1. (11)

The requirement thatnh(n)/(log n)2 → ∞ will typically be satisfied wheneverM∗ \ M is
nonempty. ThenM∗ containsP ∗ that are “nonparametric” relative to the chosen sequence ofmod-
elsM1,M2, . . . Thus, the problem should not be “too simple”: we do not know whether (11) holds
in the parametric setting whereP ∗ ∈ Mk for somek on the list. Theorem 2 expresses that the
accumulated riskof the switch-distribution, asn increases, is not significantly larger than theac-
cumulated riskof any other procedure. This “convergence in sum” has been considered before by,
for example, [13, 4], and is compared to ordinary convergence in the full paper, where we will also
give example applications of the theorem and further discuss (10). The proof works by bounding
the redundancy of the switch-distribution, which, by (8), is identical to the accumulated risk. It is
not clear whether similar techniques can be used to bound theindividual risk.

5 Computing the Switch-Distribution

Algorithm 1 sequentially computes the posterior probability on predictorsp1, p2, . . .. It requires that
π is a prior of the form in (7), andπM is geometric, as is also required for Theorem 1 and permitted
in Theorem 2. The algorithm resembles FIXED-SHARE [7], but whereas FIXED-SHARE implicitly
imposes a geometric distribution forπT, we allow general priors by varying the shared weight with
n. We do require slightly more space to cope withπM .

Algorithm 1 SWITCH(xN )
⊲ K is the number of experts;θ is as in the definition ofπM .
for k=1, . . . ,K do initialisewa

k ← θ · πK(k); wb
k ← (1− θ) · πK(k) od

Report priorπ(K1) = wa
K1

(aK-sized array)
for n=1, . . . , N do

for k=1, . . . ,K do wa
k ← wa

k · pk(xn|x
n−1); wb

k ← wb
k · pk(xn|x

n−1) od (loss update)
pool← πT(Z = n | Z ≥ n) ·

∑

k wa
k (share update)

for k=1, . . . ,K do
wa

k ← wa
k · πT(Z 6= n | Z ≥ n) + θ · pool · πK(k)

wb
k ← wb

k + (1− θ) · pool · πK(k)
od
Report posteriorπ(Kn+1 | x

n) = (wa
Kn+1

+ wb
Kn+1

)/
∑

k(wa
k + wb

k) (aK-sized array)
od

This algorithm can be used to obtain fast convergence in the sense of Theorem 2, which can be
extended to cope with a restriction to only the firstK experts. Theorem 1 can be extended to show
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consistency in this case as well. IfπT(Z = n | Z ≥ n) andπK(k) can be computed in constant time,
then the running time isΘ(N ·K), which is of the same order as that of fast model selection criteria
like AIC and BIC. We will explain this algorithm in more detail in a forthcoming publication.
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A Proofs

Proof of Theorem 1. Let Un = {s ∈ S | Kn+1(s) 6= k∗} denote the set of ‘bad’ parameterss that
select an incorrect model. It is sufficient to show that

lim
n→∞

∑

s∈Un
π
(

s

)

qs(X
n)

∑

s∈S
π
(

s

)

qs(Xn)
= 0 with P̄k∗-probability 1. (12)

To see this, suppose the theorem is false. Then there exists aΦ ⊆ Θk∗ with wk∗(Φ) > 0 such that
(6) does not hold for anyθ∗ ∈ Φ. But then by definition ofP̄k∗ we have a contradiction with (12).
Now letA = {s ∈ S : km(s) 6= k∗} denote the set of parameters that are bad for sufficiently largen.
We observe that for eachs′ ∈ Un there exists at least one elements ∈ A that uses the same sequence
of switch-points and predictors on the firstn + 1 outcomes (this implies thatKi(s) = Ki(s

′) for
i = 1, . . . , n + 1) and has no switch-points beyondn (i.e. tm(s) ≤ n). Consequently, eithers′ = s

or s′ ∈ Es. Therefore
∑

s
′∈Un

π(s′)qs′(x
n) ≤

∑

s∈A

(π(s) + π(Es)) qs(x
n) ≤ (1 + c)

∑

s∈A

π(s)qs(x
n). (13)

Defining the mixturer(xn) =
∑

s∈A π(s)qs(x
n), we will show that

lim
n→∞

r(Xn)

π(s = (0, k∗)) · p̄k∗(Xn)
= 0 with P̄k∗-probability 1. (14)

Using (13) and the fact that
∑

s∈S
π(s)qs(x

n) ≥ π(s = (0, k∗)) · p̄k∗(xn), this implies (12). For
all s ∈ A andxtm(s) ∈ X tm(s), by definitionQs(X

∞
tm+1|x

tm) equalsP̄km
(X∞

tm+1|x
tm), which is

mutually singular withP̄k∗(X∞
tm+1|x

tm) by assumption. IfX is a separable metric space, which
holds becauseX ⊆ R

d for somed ∈ Z
+, it can be shown that this conditional mutual singularity

implies mutual singularity ofQs(X
∞) andP̄k∗(X∞). To see this for countableX , let Bxtm be any

event such thatQs(Bxtm |xtm) = 1 andP̄k∗(Bxtm |xtm) = 0. Then, forB = {y∞ ∈ X∞ | y∞
tm+1 ∈

Bytm}, we have thatQs(B) = 1 andP̄k∗(B) = 0. In the uncountable case, however,B may not be
measurable. We omit the full proof, which was shown to us by P.Harremöes. Any countable mixture
of distributions that are mutually singular withPk∗ , in particularR, is mutually singular withPk∗ .
This implies (14) by Lemma 3.1 of [2], which says that for any two mutually singular distributions
R andP , the density ratior(Xn)/p(Xn) goes to0 asn→∞ with P -probability1.

Proof of Theorem 2. We will show that for everyα > 1,

sup
P∗∈M∗

n
∑

i=1

Ri(P
∗, Psw) ≤ α

n
∑

i=1

h(i) + ǫα,n

n
∑

i=1

h(i), (15)

whereǫα,n
n→∞
−→ 0, andǫα,1, ǫα,2, . . . are fixed constants that only depend onα, but not on the

chosen subsetM∗ of 〈M〉. Theorem 2 is a consequence of (15), which we will proceed to prove.
Let δn : Xn → {1, . . . , ⌈nτ⌉} be a model selection criterion, restricted to samples of size n, that
is minimax optimal, i.e. it achieves the infimum in (10). If such aδn does not exist, we take aδn

that is almost minimax optimal in the sense that it achieves the infimum to withinh(n)/n. For
j ≥ 1, let tj = ⌈αj−1⌉ − 1. Fix an arbitraryn > 0 and letm be the unique integer such that
tm < n ≤ tm+1. We will first show that for arbitraryxn, psw achieves redundancy not much worse
thanqs with s = (t1, k1), . . . , (tm, km), whereki = δti

(xti). Then we show that the redundancy of
thisqs is small enough for (15) to hold. Thus, to achieve this redundancy, it is sufficient to take only
a logarithmic numberm− 1 of switch-points:m− 1 < logα(n + 1). Formally, we have, for some
c > 0, uniformly for all n, xn ∈ Xn,
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− log psw(xn) = − log
∑

s
′∈S

qs′(x
n)π(s′) ≤ − log qs(x

n)− log πM(m)−
m

∑

j=1

log πT(tj)πK(kj)

≤ − log qs(x
n) + c log(n + 1) + cm(τ + 1) log n = − log qs(x

n) + O((log n)2). (16)

Here the second inequality follows because of (9), and the final equality follows becausem ≤
logα(n + 1) + 1. Now fix anyP ∗ ∈ 〈M〉. SinceP ∗ ∈ 〈M〉, it must have some densityp∗. Thus,
applying (8), and then (16), and then (8) again, we find that

n
∑

i=1

Ri(P
∗, Psw) = EXn∼P∗ [− log psw(Xn) + log p∗(Xn)]

≤ EXn∼P∗ [− log qs(X
n) + log p∗(Xn)] + O((log n)2)

=
n

∑

i=1

Ri(P
∗, Qs) + O((log n)2) =

m
∑

j=1

min{tj+1,n}
∑

i=tj+1

Ri(P
∗, P̄kj

) + O((log n)2). (17)

For i appearing in the second sum, withtj < i ≤ tj+1, we have Ri(P
∗, P̄kj

) ≤

supi′≥tj+1
Ri′(P

∗, P̄kj
) = supi′≥tj+1

Ri′(P
∗, P̄δtj

(xtj )) ≤ h(tj + 1), so that

Ri(P
∗, P̄kj

) ≤
1

tj + 1
· (tj + 1)h(tj + 1) ≤

1

tj + 1
· ih(i) ≤

tj+1

tj + 1
h(i) ≤ αh(i),

where the middle inequality follows becausenh(n) is increasing (condition (b) of the theorem).

Summing overi, we get
∑m

j=1

∑min{tj+1,n}
i=tj+1 Ri(P

∗, P̄kj
) ≤ α

∑n
i=1 h(i). Combining this with

(17), it follows that
∑n

i=1 Ri(P
∗, Psw) ≤ α

∑n
i=1 h(i) + O((log n)2). Because this holds for arbi-

trary P ∗ ∈M∗ (with the constant in theO notation not depending onP ∗), (15) now follows by the
requirement of Theorem 2 thatnh(n)/(log n)2 →∞.
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